메뉴 건너뛰기




Volumn , Issue , 2014, Pages 235-239

On parallelizability of stochastic gradient descent for speech DNNS

Author keywords

[No Author keywords available]

Indexed keywords

DATA COMPRESSION; PROGRAM PROCESSORS; TIME VARYING NETWORKS;

EID: 84905269646     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2014.6853593     Document Type: Conference Paper
Times cited : (83)

References (23)
  • 2
    • 84865801985 scopus 로고    scopus 로고
    • Conversational speech transcription using context-dependent deep neural networks
    • F. Seide, G. Li, and D. Yu, "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks," Interspeech, 2011.
    • (2011) Interspeech
    • Seide, F.1    Li, G.2    Yu, D.3
  • 6
    • 84890512601 scopus 로고    scopus 로고
    • Asynchronous stochastic gradient descent for DNN training
    • S. Zhang, C. Zhang, Z. You, R. Zheng, and B. Xu, "Asynchronous Stochastic Gradient Descent for DNN Training," ICASSP, 2013.
    • (2013) ICASSP
    • Zhang, S.1    Zhang, C.2    You, Z.3    Zheng, R.4    Xu, B.5
  • 7
    • 0028464214 scopus 로고
    • Context-dependent connectionist probabilty estimatation in a hybrid hidden markov model-neural net speech recognition system
    • H. Franco et al., "Context-Dependent Connectionist Probabilty Estimatation in a Hybrid Hidden Markov Model-Neural Net Speech Recognition System," Computer Speech and Language, vol. 8, pp. 211-222, 1994.
    • (1994) Computer Speech and Language , vol.8 , pp. 211-222
    • Franco, H.1
  • 8
    • 84890496567 scopus 로고    scopus 로고
    • A cluster-based multiple deep neural networks method for large vocabulary continuous speech recognition
    • P. Zhou, C. Liu, Q. Liu, L. Dai, and H. Jiang, "A Cluster-Based Multiple Deep Neural Networks Method for Large Vocabulary Continuous Speech Recognition," ICASSP, 2013.
    • (2013) ICASSP
    • Zhou, P.1    Liu, C.2    Liu, Q.3    Dai, L.4    Jiang, H.5
  • 10
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers," in Foundations and Trends in Machine Learning, Vol. 3, No. 1 (2010) 1-122.
    • (2010) Foundations and Trends in Machine Learning , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 11
    • 84878397276 scopus 로고    scopus 로고
    • Pipelined back-propagation for context-dependent deep neural networks
    • X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide, "Pipelined Back-Propagation for Context-Dependent Deep Neural Networks," Interspeech, 2012.
    • (2012) Interspeech
    • Chen, X.1    Eversole, A.2    Li, G.3    Yu, D.4    Seide, F.5
  • 12
    • 80053383285 scopus 로고
    • Principles of neurodynamics: Perceptrons and the theory of brain mechanisms
    • Wash. DC
    • F. Rosenblatt, "Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms", Spartan Books, Wash. DC, 1961.
    • (1961) Spartan Books
    • Rosenblatt, F.1
  • 14
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and Y. Teh, "A Fast Learning Algorithm for Deep Belief Nets", Neural Computation, vol. 18, pp. 1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 15
    • 84858976070 scopus 로고    scopus 로고
    • Feature engineering in context-dependent deep neural networks for conversational speech transcription
    • Waikoloa Village
    • F. Seide, G. Li, X. Chen, and D. Yu, "Feature Engineering in Context-Dependent Deep Neural Networks for Conversational Speech Transcription," Proc. ASRU, Waikoloa Village, 2011.
    • (2011) Proc. ASRU
    • Seide, F.1    Li, G.2    Chen, X.3    Yu, D.4
  • 16
    • 70349213445 scopus 로고    scopus 로고
    • Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling
    • B. Kingsbury, "Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling," ICASSP, 2009.
    • (2009) ICASSP
    • Kingsbury, B.1
  • 17
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Oct.
    • D. Rumelhart, G. Hinton, and R. Williams, "Learning Representations By Back-Propagating Errors," Nature, vol. 323, Oct. 1986.
    • (1986) Nature , vol.323
    • Rumelhart, D.1    Hinton, G.2    Williams, R.3
  • 18
    • 77956541496 scopus 로고    scopus 로고
    • Deep learning via Hessian-free optimization
    • J. Martens, "Deep learning via Hessian-free optimization," ICML, 2010.
    • (2010) ICML
    • Martens, J.1
  • 19
    • 84878379108 scopus 로고    scopus 로고
    • Scalable minimum bayes risk training of deep neural network acoustic models using distributed hessian-free optimization
    • B. Kingsbury, T. Sainath, and H. Soltau, "Scalable Minimum Bayes Risk Training of Deep Neural Network Acoustic Models Using Distributed Hessian-free Optimization," Interspeech, 2012.
    • (2012) Interspeech
    • Kingsbury, B.1    Sainath, T.2    Soltau, H.3
  • 21
    • 84887388950 scopus 로고    scopus 로고
    • An empirical study of learning rates in deep neural networks for speech recognition
    • A. Senior, G. Heigold, M.-A. Ranzato, K. Yang, "An Empirical Study of Learning Rates in Deep Neural Networks for Speech Recognition," ICASSP, 2013.
    • (2013) ICASSP
    • Senior, A.1    Heigold, G.2    Ranzato, M.-A.3    Yang, K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.