메뉴 건너뛰기




Volumn , Issue , 2014, Pages 2149-2153

Linear regression-based adaptation of music emotion recognition models for personalization

Author keywords

emotion recognition; MAPLR; MLLR; music; Personalization

Indexed keywords

SIGNAL PROCESSING;

EID: 84905255232     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2014.6853979     Document Type: Conference Paper
Times cited : (35)

References (27)
  • 2
    • 85135272864 scopus 로고    scopus 로고
    • Maximum a posteriori linear regression for hidden Markov model adaptation
    • C. Chesta, O. Siohan, and C.-H. Lee. "Maximum a posteriori linear regression for hidden Markov model adaptation," in Proc. Eurospeech, 1999.
    • (1999) Proc. Eurospeech
    • Chesta, C.1    Siohan, O.2    Lee, C.-H.3
  • 3
    • 0032050110 scopus 로고    scopus 로고
    • Maximum likelihood linear transformations for hmm-based speech recognition
    • M. Gales, "Maximum likelihood linear transformations for hmm-based speech recognition," Computer Speech and Language, vol. 12, pp. 75-98, 1998.
    • (1998) Computer Speech and Language , vol.12 , pp. 75-98
    • Gales, M.1
  • 4
    • 33745759392 scopus 로고    scopus 로고
    • Emotion perceived and emotion felt: Same or different?
    • A. Gabrielsson, "Emotion perceived and emotion felt: Same or different?" Musicae Scientiae, pp. 123-147, 2002.
    • (2002) Musicae Scientiae , pp. 123-147
    • Gabrielsson, A.1
  • 5
    • 0028419019 scopus 로고
    • Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains
    • J. Gauvain and C.-H. Lee, "Maximum a posteriori estimation for multivariate Gaussian mixture observations of Markov chains," IEEE Trans. Speech and Audio Processing, vol. 2, pp. 291-298, 1994.
    • (1994) IEEE Trans. Speech and Audio Processing , vol.2 , pp. 291-298
    • Gauvain, J.1    Lee, C.-H.2
  • 6
    • 34547516258 scopus 로고    scopus 로고
    • Approximating the kullback-leibler divergence between gaussian mixture models
    • J. Hershey and P. Olsen, "Approximating the Kullback-Leibler divergence between Gaussian mixture models," in Proc. Int. Conf. Acoustic, Speech, and Signal Processing, vol. 4, 2007, pp. 317-320.
    • (2007) Proc. Int. Conf. Acoustic, Speech, and Signal Processing , vol.4 , pp. 317-320
    • Hershey, J.1    Olsen, P.2
  • 12
    • 0029288633 scopus 로고
    • Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models
    • C. J. Leggetter and P. C. Woodland, "Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models," Computer speech and language, vol. 9, no. 2, p. 171, 1995.
    • (1995) Computer Speech and Language , vol.9 , Issue.2 , pp. 171
    • Leggetter, C.J.1    Woodland, P.C.2
  • 13
    • 0033884858 scopus 로고    scopus 로고
    • Speaker verification using adapted Gaussian mixture models
    • D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, "Speaker verification using adapted Gaussian mixture models," Digital Signal Processing, vol. 10, no. 1-3, pp. 19-41, 2000.
    • (2000) Digital Signal Processing , vol.10 , Issue.1-3 , pp. 19-41
    • Reynolds, D.A.1    Quatieri, T.F.2    Dunn, R.B.3
  • 14
    • 4644280844 scopus 로고
    • A circumplex model of affect
    • J. A. Russell, "A circumplex model of affect," J. Personality and Social Science, vol. 39, no. 6, pp. 1161-1178, 1980.
    • (1980) J. Personality and Social Science , vol.39 , Issue.6 , pp. 1161-1178
    • Russell, J.A.1
  • 16
    • 79952403274 scopus 로고    scopus 로고
    • Prediction of time-varying musical mood distributions using Kalman filtering
    • E. M. Schmidt, and Y. E. Kim, "Prediction of time-varying musical mood distributions using Kalman filtering," in Proc. Int. Conf. Machine Learning and Applications, 2010, pp. 655-660.
    • (2010) Proc. Int. Conf. Machine Learning and Applications , pp. 655-660
    • Schmidt, E.M.1    Kim, Y.E.2
  • 18
    • 84905228599 scopus 로고    scopus 로고
    • [online] http://www.allmusic.com/moods
  • 19
    • 84871358453 scopus 로고    scopus 로고
    • The acoustic emotion Gaussians model for emotion-based music annotation and retrieval
    • J.-C. Wang, Y.-H. Yang, H.-M. Wang, and S.-K. Jeng, "The acoustic emotion Gaussians model for emotion-based music annotation and retrieval," in Proc. ACM Multimedia, pp. 89-98, 2012.
    • (2012) Proc. ACM Multimedia , pp. 89-98
    • Wang, J.-C.1    Yang, Y.-H.2    Wang, H.-M.3    Jeng, S.-K.4
  • 24
    • 85008559668 scopus 로고    scopus 로고
    • Predicting the distribution of perceived emotions of a music signal for content retrieval
    • Y.-H. Yang and H. H. Chen, "Predicting the distribution of perceived emotions of a music signal for content retrieval," IEEE Trans. Audio, Speech, and Language Processing, vol. 19, no. 7, pp. 2184-2196, 2011.
    • (2011) IEEE Trans. Audio, Speech, and Language Processing , vol.19 , Issue.7 , pp. 2184-2196
    • Yang, Y.-H.1    Chen, H.H.2
  • 27
    • 48249148240 scopus 로고    scopus 로고
    • Research on emotional vocabularydriven personalized music retrieval
    • B. Zhu and T. Liu, "Research on emotional vocabularydriven personalized music retrieval," in Edutainment, 2008, pp. 252-261.
    • (2008) Edutainment , pp. 252-261
    • Zhu, B.1    Liu, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.