메뉴 건너뛰기




Volumn 19, Issue 7, 2011, Pages 2184-2196

Prediction of the Distribution of Perceived Music Emotions Using Discrete Samples

Author keywords

Arousal; emotion distribution prediction; music emotion recognition; regression; subjectivity; valence

Indexed keywords


EID: 85008559668     PISSN: 15587916     EISSN: 15587924     Source Type: Journal    
DOI: 10.1109/TASL.2011.2118752     Document Type: Article
Times cited : (60)

References (81)
  • 5
    • 33745759392 scopus 로고    scopus 로고
    • Emotion perceived and emotion felt: Same or different?
    • A. Gabrielsson, “Emotion perceived and emotion felt: Same or different?,” Musicae Scientiae, pp. 123–147, 2002.
    • (2002) Musicae Scientiae , pp. 123-147
    • Gabrielsson, A.1
  • 9
    • 33744975700 scopus 로고    scopus 로고
    • Automatic mood detection and tracking of music audio signals
    • Jan.
    • L. Lu, D. Liu, and H. Zhang “Automatic mood detection and tracking of music audio signals,” IEEE Trans. Audio, Speech, Lang. Process., vol. 14, no. 1, pp. 5–18, Jan. 2006.
    • (2006) IEEE Trans. Audio, Speech, Lang. Process. , vol.14 , Issue.1 , pp. 5-18
    • Lu, L.1    Liu, D.2    Zhang, H.3
  • 15
    • 85035841760 scopus 로고    scopus 로고
    • Expression, perception and induction of musical emotions: A review and a questionnaire study of everyday listening
    • P. N. Juslin and P. Laukka “Expression, perception and induction of musical emotions: A review and a questionnaire study of everyday listening,” J. New Music Res., vol. 33, no. 3, pp. 217–238, 2004.
    • (2004) J. New Music Res. , vol.33 , Issue.3 , pp. 217-238
    • Juslin, P.N.1    Laukka, P.2
  • 16
    • 4644280844 scopus 로고
    • A circumplex model of affect
    • J. A. Russell “A circumplex model of affect,” J. Personal. Social Sci., vol. 39, no. 6, pp. 1161–1178, 1980.
    • (1980) J. Personal. Social Sci. , vol.39 , Issue.6 , pp. 1161-1178
    • Russell, J.A.1
  • 20
    • 79951628231 scopus 로고    scopus 로고
    • Ranking-based emotion recognition for music organization and retrieval
    • Y.-H. Yang and H. H. Chen “Ranking-based emotion recognition for music organization and retrieval,” IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 4, pp. 762–774, 2011.
    • (2011) IEEE Trans. Audio, Speech, Lang. Process. , vol.19 , Issue.4 , pp. 762-774
    • Yang, Y.-H.1    Chen, H.H.2
  • 22
    • 49549124035 scopus 로고    scopus 로고
    • Automatic emotion prediction of song excerpts: Index construction, algorithm design and empirical comparison
    • K. MacDorman, S. Ough, and C.-C. Ho “Automatic emotion prediction of song excerpts: Index construction, algorithm design and empirical comparison,” J. New Music Res., vol. 36, no. 4, pp. 281–299, 2007.
    • (2007) J. New Music Res. , vol.36 , Issue.4 , pp. 281-299
    • MacDorman, K.1    Ough, S.2    Ho, C.-C.3
  • 23
    • 84873646150 scopus 로고    scopus 로고
    • Prediction of multidimensional emotional ratings in music from audio using multivariate regression models
    • T. Eerola, O. Lartillot, and P. Toiviainen, “Prediction of multidimensional emotional ratings in music from audio using multivariate regression models,” in Proc. Int. Conf. Music Inf. Retrieval, 2009, pp. 621–626.
    • (2009) Proc. Int. Conf. Music Inf. Retrieval , pp. 621-626
    • Eerola, T.1    Lartillot, O.2    Toiviainen, P.3
  • 24
    • 78249252118 scopus 로고    scopus 로고
    • Automated music emotion recognition: A systematic evaluation
    • A. Huq, J. P. Bello, and R. Rowe “Automated music emotion recognition: A systematic evaluation,” J. New Music Res., vol. 39, no. 3, pp. 227–244, 2010.
    • (2010) J. New Music Res. , vol.39 , Issue.3 , pp. 227-244
    • Huq, A.1    Bello, J.P.2    Rowe, R.3
  • 25
    • 33744741319 scopus 로고    scopus 로고
    • Modeling emotional content of music using system identification
    • Jun.
    • M. D. Korhonen, D. A. Clausi, and M. E. Jernigan “Modeling emotional content of music using system identification,” IEEE Trans. Syst., Man, Cybern., vol. 36, no. 3, pp. 588–599, Jun. 2006.
    • (2006) IEEE Trans. Syst., Man, Cybern. , vol.36 , Issue.3 , pp. 588-599
    • Korhonen, M.D.1    Clausi, D.A.2    Jernigan, M.E.3
  • 26
    • 0348093779 scopus 로고    scopus 로고
    • Ph.D. dissertation, School of Music Education, Univ. New South Wales, Sydney, Australia
    • E. Schubert, “Measurement and time series analysis of emotion in music,” Ph.D. dissertation, School of Music Education, Univ. New South Wales, Sydney, Australia, 1999.
    • (1999) Measurement and time series analysis of emotion in music
    • Schubert, E.1
  • 27
    • 84555174290 scopus 로고    scopus 로고
    • Prediction of time-varying musical mood distributions from audio
    • E. M. Schmidt and Y. E. Kim, “Prediction of time-varying musical mood distributions from audio,” in Proc. Int. Conf. Music Inf. Retrieval, 2010, pp. 465–470.
    • (2010) Proc. Int. Conf. Music Inf. Retrieval , pp. 465-470
    • Schmidt, E.M.1    Kim, Y.E.2
  • 29
    • 84889960454 scopus 로고
    • An argument for basic emotions
    • P. Ekman “An argument for basic emotions,” Cogn. Emot., vol. 6, no. 3, pp. 169–200, 1992.
    • (1992) Cogn. Emot. , vol.6 , Issue.3 , pp. 169-200
    • Ekman, P.1
  • 30
    • 0040087367 scopus 로고
    • Expression in music: A discussion of experimental studies and theories
    • K. Hevner “Expression in music: A discussion of experimental studies and theories,” Psychol. Rev., vol. 48, no. 2, pp. 186–204, 1935.
    • (1935) Psychol. Rev. , vol.48 , Issue.2 , pp. 186-204
    • Hevner, K.1
  • 32
    • 50849085386 scopus 로고    scopus 로고
    • Beyond valence and activity in the emotional connotations of music
    • G. Collier “Beyond valence and activity in the emotional connotations of music,” Psychol. Music, vol. 35, no. 1, pp. 110–131, 2007.
    • (2007) Psychol. Music , vol.35 , Issue.1 , pp. 110-131
    • Collier, G.1
  • 33
    • 79953822842 scopus 로고    scopus 로고
    • Affect detection: An interdisciplinary review of models, methods and their applications
    • Jan.
    • R. A. Calvo and S. D'Mello, “Affect detection: An interdisciplinary review of models, methods and their applications,” IEEE Trans. Affective Comput., vol. 1, no. 1, pp. 18–37, Jan. 2010.
    • (2010) IEEE Trans. Affective Comput. , vol.1 , Issue.1 , pp. 18-37
    • Calvo, R.A.1    D'Mello, S.2
  • 38
    • 85008558866 scopus 로고    scopus 로고
    • Machine recognition of music emotion: A review
    • to be published
    • Y.-H. Yang and H. H. Chen, “Machine recognition of music emotion: A review,” ACM Trans. Intell. Syst. Technol., 2011, to be published.
    • (2011) ACM Trans. Intell. Syst. Technol.
    • Yang, Y.-H.1    Chen, H.H.2
  • 39
    • 84555199091 scopus 로고    scopus 로고
    • When lyrics outperform audio for music mood classification: A feature analysis
    • X. Hu and J. S. Downie, “When lyrics outperform audio for music mood classification: A feature analysis,” in Proc. Int. Conf. Music Inf. Retrieval, 2010, pp. 619–624.
    • (2010) Proc. Int. Conf. Music Inf. Retrieval , pp. 619-624
    • Hu, X.1    Downie, J.S.2
  • 41
    • 84862936491 scopus 로고    scopus 로고
    • Automatic mood classification using tf*idf based on lyrics
    • M. Zaanen and P. Kanters, “Automatic mood classification using tf*idf based on lyrics,” in Proc. Int. Conf. Music Inf. Retrieval, 2010, pp. 75–80.
    • (2010) Proc. Int. Conf. Music Inf. Retrieval , pp. 75-80
    • Zaanen, M.1    Kanters, P.2
  • 42
    • 77952100523 scopus 로고    scopus 로고
    • Mister D.J., cheer me up!': musical and textual features for automatic mood classification
    • B. Schuller, C. Hage, D. Schuller, and G. Rigoll “Mister D.J., cheer me up!': musical and textual features for automatic mood classification,” J. New Music Res., vol. 39, no. 1, pp. 13–34, 2010.
    • (2010) J. New Music Res. , vol.39 , Issue.1 , pp. 13-34
    • Schuller, B.1    Hage, C.2    Schuller, D.3    Rigoll, G.4
  • 43
    • 77952482069 scopus 로고    scopus 로고
    • Determination of nonprototypical valence and arousal in popular music: Features and performances
    • Article ID 735854
    • B. Schuller, J. Dorfner, and G. Rigoll, “Determination of nonprototypical valence and arousal in popular music: Features and performances,” EURASIP J. Audio, Speech, Music Process., p. 19, 2010, Article ID 735854.
    • (2010) EURASIP J. Audio, Speech, Music Process. , pp. 19
    • Schuller, B.1    Dorfner, J.2    Rigoll, G.3
  • 48
    • 25444448065 scopus 로고    scopus 로고
    • Cambridge, MA: MIT Press, [Online]. Available: http://www.gaussianprocess.org/gpml/
    • C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. Cambridge, MA: MIT Press, 2006 [Online]. Available: http://www.gaussianprocess.org/gpml/
    • (2006) Gaussian Processes for Machine Learning
    • Rasmussen, C.1    Williams, C.2
  • 49
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V. Vapnik “Support vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, 1995.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 53
    • 67650999671 scopus 로고    scopus 로고
    • Optimal classifier fusion in a non-Bayesian probabilistic framework
    • Sep.
    • O. R. Terrades, E. Valveny, and S. Tabbone “Optimal classifier fusion in a non-Bayesian probabilistic framework,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 9, pp. 1630–1644, Sep. 2009.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.9 , pp. 1630-1644
    • Terrades, O.R.1    Valveny, E.2    Tabbone, S.3
  • 54
    • 0026980924 scopus 로고
    • A comparative study of load sharing in heterogeneous multicomputersystems
    • S. A. Banawan and N. M. Zeidat, “A comparative study of load sharing in heterogeneous multicomputersystems,” in Proc. Annu. Simulat. Symp., 1992, pp. 22–31.
    • (1992) Proc. Annu. Simulat. Symp. , pp. 22-31
    • Banawan, S.A.1    Zeidat, N.M.2
  • 56
    • 84946031884 scopus 로고
    • Procedures for detecting outlying observations in samples
    • F. E. Grubbs, “Procedures for detecting outlying observations in samples,” Technometrics, vol. 11, no. 1, pp. 1–21, 1969.
    • (1969) Technometrics , vol.11 , Issue.1 , pp. 1-21
    • Grubbs, F.E.1
  • 57
    • 0034543675 scopus 로고    scopus 로고
    • Cue utilization in communication of emotion in music performance: Relating performance to perception
    • P. N. Juslin “Cue utilization in communication of emotion in music performance: Relating performance to perception,” J. Exper. Psychol.: Human Percept. Perform., vol. 16, no. 6, pp. 1797–1813, 2000.
    • (2000) J. Exper. Psychol.: Human Percept. Perform. , vol.16 , Issue.6 , pp. 1797-1813
    • Juslin, P.N.1
  • 58
    • 0036555380 scopus 로고    scopus 로고
    • Music: A link between cognition and emotion
    • C. Krumhansl, “Music: A link between cognition and emotion,” Current Direct. Psychol. Sci., vol. 11, no. 2, pp. 45–50, 2002.
    • (2002) Current Direct. Psychol. Sci. , vol.11 , Issue.2 , pp. 45-50
    • Krumhansl, C.1
  • 59
    • 1642325338 scopus 로고    scopus 로고
    • The influence of musical structure on emotional expression
    • P. N. Juslin and J. A. Sloboda, Eds. New York: Oxford Univ. Press
    • A. Gabrielsson and E. Lindström, “The influence of musical structure on emotional expression,” in Music and Emotion: Theory and Research, P. N. Juslin and J. A. Sloboda, Eds. New York: Oxford Univ. Press, 2001.
    • (2001) Music and Emotion: Theory and Research
    • Gabrielsson, A.1    Lindström, E.2
  • 60
    • 84873572465 scopus 로고    scopus 로고
    • MIR in Matlab (II): A toolbox for musical feature extraction from audio
    • [Online]. Available: http://users.jyu.fi/lartillo/mirtoolbox/
    • O. Lartillot and P. Toiviainen, “MIR in Matlab (II): A toolbox for musical feature extraction from audio,” in Proc. Int. Conf. Music Inf. Retrieval, 2007, pp. 127–130 [Online]. Available: http://users.jyu.fi/lartillo/mirtoolbox/
    • (2007) Proc. Int. Conf. Music Inf. Retrieval , pp. 127-130
    • Lartillot, O.1    Toiviainen, P.2
  • 62
    • 0036648502 scopus 로고    scopus 로고
    • Musical genre classification of audio signals
    • Jul.
    • G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,” IEEE Trans. Speech Audio Process., vol. 10, no. 5, pp. 293–302, Jul. 2002.
    • (2002) IEEE Trans. Speech Audio Process. , vol.10 , Issue.5 , pp. 293-302
    • Tzanetakis, G.1    Cook, P.2
  • 63
    • 33744781081 scopus 로고    scopus 로고
    • A Matlab toolbox to compute music similarity from audio
    • [Online]. Available: http://www.ofai.at/~elias.pampalk/ma/
    • E. Pampalk, “A Matlab toolbox to compute music similarity from audio,” in Proc. Int. Conf. Music Information Retrieval, 2004 [Online]. Available: http://www.ofai.at/~elias.pampalk/ma/
    • (2004) Proc. Int. Conf. Music Information Retrieval
    • Pampalk, E.1
  • 64
    • 84900032498 scopus 로고    scopus 로고
    • Large scale musical instrument identification
    • [Online]. Available: http://www.ifs.tuwien.ac.at/mir/muscle/del/audio tools.html#SoundDescrToolbox
    • E. Benetos, M. Kotti, and C. Kotropoulos, “Large scale musical instrument identification,” in Proc. Int. Conf. Music Inf. Retrieval, 2007 [Online]. Available: http://www.ifs.tuwien.ac.at/mir/muscle/del/audio tools.html#SoundDescrToolbox
    • (2007) Proc. Int. Conf. Music Inf. Retrieval
    • Benetos, E.1    Kotti, M.2    Kotropoulos, C.3
  • 65
    • 84873536955 scopus 로고    scopus 로고
    • Evaluation of feature extractors and psychoacoustic transformations for music genre classification
    • [Online]. Available: http://www.ifs.tuwien.ac.at/mir/audiofeatureextraction.html
    • T. Lidy and A. Rauber, “Evaluation of feature extractors and psychoacoustic transformations for music genre classification,” in Proc. Int. Conf. Music Inf. Retrieval, 2005, pp. 34–41 [Online]. Available: http://www.ifs.tuwien.ac.at/mir/audiofeatureextraction.html
    • (2005) Proc. Int. Conf. Music Inf. Retrieval , pp. 34-41
    • Lidy, T.1    Rauber, A.2
  • 66
  • 67
    • 0034319894 scopus 로고    scopus 로고
    • A computationally efficient multipitch analysis model
    • Nov.
    • T. Tolonen and M. Karjalainen “A computationally efficient multipitch analysis model,” IEEE Trans. Speech Audio Process., vol. 8, no. 6, pp. 708–716, Nov. 2000.
    • (2000) IEEE Trans. Speech Audio Process. , vol.8 , Issue.6 , pp. 708-716
    • Tolonen, T.1    Karjalainen, M.2
  • 68
  • 71
  • 72
    • 53349124705 scopus 로고    scopus 로고
    • Songs and emotions: Are lyrics and melodies equal partners
    • S. O. Ali “Songs and emotions: Are lyrics and melodies equal partners,” Psychol. Music, vol. 34, no. 4, pp. 511–534, 2006.
    • (2006) Psychol. Music , vol.34 , Issue.4 , pp. 511-534
    • Ali, S.O.1
  • 73
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani “Machine learning in automated text categorization,” ACM Comput. Surveys, vol. 34, no. 1, pp. 1–47, 2002.
    • (2002) ACM Comput. Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 74
    • 0034313871 scopus 로고    scopus 로고
    • The earth mover's distance as a metric for image retrieval
    • Y. Rubner, C. Tomasi, and L. J. Guibas “The earth mover's distance as a metric for image retrieval,” Int. J. Comput. Vis., vol. 40, no. 2, pp. 99–121, 2000.
    • (2000) Int. J. Comput. Vis. , vol.40 , Issue.2 , pp. 99-121
    • Rubner, Y.1    Tomasi, C.2    Guibas, L.J.3
  • 77
    • 28444449880 scopus 로고    scopus 로고
    • Graphviz—open source graph drawing tools
    • [Online]. Available: http://www.graphviz.org/
    • J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull, “Graphviz—open source graph drawing tools,” in Proc. Graph Drawing, 2001, pp. 483–484 [Online]. Available: http://www.graphviz.org/
    • (2001) Proc. Graph Drawing , pp. 483-484
    • Ellson, J.1    Gansner, E.R.2    Koutsofios, E.3    North, S.C.4    Woodhull, G.5
  • 78
    • 33749261433 scopus 로고    scopus 로고
    • Image deformation using moving least squares
    • S. Schaefer, T. McPhail, and J. Warren “Image deformation using moving least squares,” ACM Trans. Graphics, vol. 25, no. 3, pp. 533–540, 2006.
    • (2006) ACM Trans. Graphics , vol.25 , Issue.3 , pp. 533-540
    • Schaefer, S.1    McPhail, T.2    Warren, J.3
  • 79
    • 13144279345 scopus 로고    scopus 로고
    • Affective video content representation and modeling
    • A. Hanjalic and L.-Q. Xu, “Affective video content representation and modeling,” IEEE Trans. Multimedia, vol. 7, pp. 143–154, 2005.
    • (2005) IEEE Trans. Multimedia , vol.7 , pp. 143-154
    • Hanjalic, A.1    Xu, L.-Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.