-
5
-
-
33745759392
-
Emotion perceived and emotion felt: Same or different?
-
A. Gabrielsson, “Emotion perceived and emotion felt: Same or different?,” Musicae Scientiae, pp. 123–147, 2002.
-
(2002)
Musicae Scientiae
, pp. 123-147
-
-
Gabrielsson, A.1
-
7
-
-
0024175278
-
Sentiment extraction in music
-
H. Katayose, M. Imai, and S. Inokuchi, “Sentiment extraction in music,” in Proc. Int. Conf. Pattern Recognition, 1998, pp. 1083–1087.
-
(1998)
Proc. Int. Conf. Pattern Recognition
, pp. 1083-1087
-
-
Katayose, H.1
Imai, M.2
Inokuchi, S.3
-
8
-
-
84873433681
-
The 2007 MIREX audio mood classification task: Lessons learned
-
X. Hu, J. S. Downie, C. Laurier, M. Bay, and A. F. Ehmann, “The 2007 MIREX audio mood classification task: Lessons learned,” in Proc. Int. Conf. Music Inf. Retrieval, 2008, pp. 462–467.
-
(2008)
Proc. Int. Conf. Music Inf. Retrieval
, pp. 462-467
-
-
Hu, X.1
Downie, J.S.2
Laurier, C.3
Bay, M.4
Ehmann, A.F.5
-
9
-
-
33744975700
-
Automatic mood detection and tracking of music audio signals
-
Jan.
-
L. Lu, D. Liu, and H. Zhang “Automatic mood detection and tracking of music audio signals,” IEEE Trans. Audio, Speech, Lang. Process., vol. 14, no. 1, pp. 5–18, Jan. 2006.
-
(2006)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.14
, Issue.1
, pp. 5-18
-
-
Lu, L.1
Liu, D.2
Zhang, H.3
-
10
-
-
7744228161
-
User-adaptive music emotion recognition
-
M.-Y. Wang, N.-Y. Zhang, and H.-C. Zhu, “User-adaptive music emotion recognition,” in Proc. IEEE Int. Conf. Signal Process., 2004, pp. 1352–1355.
-
(2004)
Proc. IEEE Int. Conf. Signal Process.
, pp. 1352-1355
-
-
Wang, M.-Y.1
Zhang, N.-Y.2
Zhu, H.-C.3
-
12
-
-
84873447495
-
Multilabel classification of music into emotions
-
K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas, “Multilabel classification of music into emotions,” in Proc. Int. Conf. Music Inf. Retrieval, 2008, pp. 325–330.
-
(2008)
Proc. Int. Conf. Music Inf. Retrieval
, pp. 325-330
-
-
Trohidis, K.1
Tsoumakas, G.2
Kalliris, G.3
Vlahavas, I.4
-
13
-
-
34547176679
-
Music emotion classification: A fuzzy approach
-
Y.-H. Yang, C. C. Liu, and H. H. Chen, “Music emotion classification: A fuzzy approach,” in Proc. ACM Int. Conf. Multimedia, 2006, pp. 81–84.
-
(2006)
Proc. ACM Int. Conf. Multimedia
, pp. 81-84
-
-
Yang, Y.-H.1
Liu, C.C.2
Chen, H.H.3
-
14
-
-
84873591302
-
Music emotion recognition: A state of the art review
-
Y. E. Kim, E. M. Schmidt, R. Migneco, B. G. Morton, P. Richardson, J. Scott, J. Speck, and D. Turnbull, “Music emotion recognition: A state of the art review,” in Proc. Int. Conf. Music Inf. Retrieval, 2010, pp. 255–266.
-
(2010)
Proc. Int. Conf. Music Inf. Retrieval
, pp. 255-266
-
-
Kim, Y.E.1
Schmidt, E.M.2
Migneco, R.3
Morton, B.G.4
Richardson, P.5
Scott, J.6
Speck, J.7
Turnbull, D.8
-
15
-
-
85035841760
-
Expression, perception and induction of musical emotions: A review and a questionnaire study of everyday listening
-
P. N. Juslin and P. Laukka “Expression, perception and induction of musical emotions: A review and a questionnaire study of everyday listening,” J. New Music Res., vol. 33, no. 3, pp. 217–238, 2004.
-
(2004)
J. New Music Res.
, vol.33
, Issue.3
, pp. 217-238
-
-
Juslin, P.N.1
Laukka, P.2
-
16
-
-
4644280844
-
A circumplex model of affect
-
J. A. Russell “A circumplex model of affect,” J. Personal. Social Sci., vol. 39, no. 6, pp. 1161–1178, 1980.
-
(1980)
J. Personal. Social Sci.
, vol.39
, Issue.6
, pp. 1161-1178
-
-
Russell, J.A.1
-
17
-
-
37849044623
-
Music emotion recognition: The role of individuality
-
Y.-H. Yang, Y.-F. Su, Y.-C. Lin, and H. H. Chen, “Music emotion recognition: The role of individuality,” in Proc. ACM Int. Workshop Human-Centered Multimedia, 2007, pp. 13–21.
-
(2007)
Proc. ACM Int. Workshop Human-Centered Multimedia
, pp. 13-21
-
-
Yang, Y.-H.1
Su, Y.-F.2
Lin, Y.-C.3
Chen, H.H.4
-
18
-
-
39649108781
-
A regression approach to music emotion recognition
-
Feb.
-
Y.-H. Yang, Y.-C. Lin, Y.-F. Su, and H. H. Chen “A regression approach to music emotion recognition,” IEEE Trans. Audio, Speech, Lang. Process., vol. 16, no. 2, pp. 448–457, Feb. 2008.
-
(2008)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.16
, Issue.2
, pp. 448-457
-
-
Yang, Y.-H.1
Lin, Y.-C.2
Su, Y.-F.3
Chen, H.H.4
-
19
-
-
70350666480
-
Mr. Emo: Music retrieval in the emotion plane
-
Y.-H. Yang, Y.-C. Lin, H.-T. Cheng, and H. H. Chen, “Mr. Emo: Music retrieval in the emotion plane,” in Proc. ACM Int. Conf. Multimedia, 2008, pp. 1003–1004.
-
(2008)
Proc. ACM Int. Conf. Multimedia
, pp. 1003-1004
-
-
Yang, Y.-H.1
Lin, Y.-C.2
Cheng, H.-T.3
Chen, H.H.4
-
20
-
-
79951628231
-
Ranking-based emotion recognition for music organization and retrieval
-
Y.-H. Yang and H. H. Chen “Ranking-based emotion recognition for music organization and retrieval,” IEEE Trans. Audio, Speech, Lang. Process., vol. 19, no. 4, pp. 762–774, 2011.
-
(2011)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.19
, Issue.4
, pp. 762-774
-
-
Yang, Y.-H.1
Chen, H.H.2
-
21
-
-
72449127098
-
Personalized music emotion recognition
-
Y.-H. Yang, Y.-C. Lin, and H. H. Chen, “Personalized music emotion recognition,” in Proc. ACM Int. Conf. Inf. Retrieval, 2009, pp. 748–749.
-
(2009)
Proc. ACM Int. Conf. Inf. Retrieval
, pp. 748-749
-
-
Yang, Y.-H.1
Lin, Y.-C.2
Chen, H.H.3
-
22
-
-
49549124035
-
Automatic emotion prediction of song excerpts: Index construction, algorithm design and empirical comparison
-
K. MacDorman, S. Ough, and C.-C. Ho “Automatic emotion prediction of song excerpts: Index construction, algorithm design and empirical comparison,” J. New Music Res., vol. 36, no. 4, pp. 281–299, 2007.
-
(2007)
J. New Music Res.
, vol.36
, Issue.4
, pp. 281-299
-
-
MacDorman, K.1
Ough, S.2
Ho, C.-C.3
-
23
-
-
84873646150
-
Prediction of multidimensional emotional ratings in music from audio using multivariate regression models
-
T. Eerola, O. Lartillot, and P. Toiviainen, “Prediction of multidimensional emotional ratings in music from audio using multivariate regression models,” in Proc. Int. Conf. Music Inf. Retrieval, 2009, pp. 621–626.
-
(2009)
Proc. Int. Conf. Music Inf. Retrieval
, pp. 621-626
-
-
Eerola, T.1
Lartillot, O.2
Toiviainen, P.3
-
24
-
-
78249252118
-
Automated music emotion recognition: A systematic evaluation
-
A. Huq, J. P. Bello, and R. Rowe “Automated music emotion recognition: A systematic evaluation,” J. New Music Res., vol. 39, no. 3, pp. 227–244, 2010.
-
(2010)
J. New Music Res.
, vol.39
, Issue.3
, pp. 227-244
-
-
Huq, A.1
Bello, J.P.2
Rowe, R.3
-
25
-
-
33744741319
-
Modeling emotional content of music using system identification
-
Jun.
-
M. D. Korhonen, D. A. Clausi, and M. E. Jernigan “Modeling emotional content of music using system identification,” IEEE Trans. Syst., Man, Cybern., vol. 36, no. 3, pp. 588–599, Jun. 2006.
-
(2006)
IEEE Trans. Syst., Man, Cybern.
, vol.36
, Issue.3
, pp. 588-599
-
-
Korhonen, M.D.1
Clausi, D.A.2
Jernigan, M.E.3
-
26
-
-
0348093779
-
-
Ph.D. dissertation, School of Music Education, Univ. New South Wales, Sydney, Australia
-
E. Schubert, “Measurement and time series analysis of emotion in music,” Ph.D. dissertation, School of Music Education, Univ. New South Wales, Sydney, Australia, 1999.
-
(1999)
Measurement and time series analysis of emotion in music
-
-
Schubert, E.1
-
27
-
-
84555174290
-
Prediction of time-varying musical mood distributions from audio
-
E. M. Schmidt and Y. E. Kim, “Prediction of time-varying musical mood distributions from audio,” in Proc. Int. Conf. Music Inf. Retrieval, 2010, pp. 465–470.
-
(2010)
Proc. Int. Conf. Music Inf. Retrieval
, pp. 465-470
-
-
Schmidt, E.M.1
Kim, Y.E.2
-
28
-
-
77952382770
-
Feature selection for content-based, time-varying musical emotion regression
-
E. M. Schmidt, D. Turnbull, and Y. E. Kim, “Feature selection for content-based, time-varying musical emotion regression,” in Proc. ACM Int. Conf. Multimedia Inf. Retrieval, 2010, pp. 267–274.
-
(2010)
Proc. ACM Int. Conf. Multimedia Inf. Retrieval
, pp. 267-274
-
-
Schmidt, E.M.1
Turnbull, D.2
Kim, Y.E.3
-
29
-
-
84889960454
-
An argument for basic emotions
-
P. Ekman “An argument for basic emotions,” Cogn. Emot., vol. 6, no. 3, pp. 169–200, 1992.
-
(1992)
Cogn. Emot.
, vol.6
, Issue.3
, pp. 169-200
-
-
Ekman, P.1
-
30
-
-
0040087367
-
Expression in music: A discussion of experimental studies and theories
-
K. Hevner “Expression in music: A discussion of experimental studies and theories,” Psychol. Rev., vol. 48, no. 2, pp. 186–204, 1935.
-
(1935)
Psychol. Rev.
, vol.48
, Issue.2
, pp. 186-204
-
-
Hevner, K.1
-
32
-
-
50849085386
-
Beyond valence and activity in the emotional connotations of music
-
G. Collier “Beyond valence and activity in the emotional connotations of music,” Psychol. Music, vol. 35, no. 1, pp. 110–131, 2007.
-
(2007)
Psychol. Music
, vol.35
, Issue.1
, pp. 110-131
-
-
Collier, G.1
-
33
-
-
79953822842
-
Affect detection: An interdisciplinary review of models, methods and their applications
-
Jan.
-
R. A. Calvo and S. D'Mello, “Affect detection: An interdisciplinary review of models, methods and their applications,” IEEE Trans. Affective Comput., vol. 1, no. 1, pp. 18–37, Jan. 2010.
-
(2010)
IEEE Trans. Affective Comput.
, vol.1
, Issue.1
, pp. 18-37
-
-
Calvo, R.A.1
D'Mello, S.2
-
34
-
-
84873632528
-
Music mood representations from social tags
-
C. Laurier, M. Sordo, J. Serra, and P. Herrera, “Music mood representations from social tags,” in Proc. Int. Conf. Music Inf. Retrieval, 2009, pp. 381–386.
-
(2009)
Proc. Int. Conf. Music Inf. Retrieval
, pp. 381-386
-
-
Laurier, C.1
Sordo, M.2
Serra, J.3
Herrera, P.4
-
35
-
-
54049094499
-
Automatic chord recognition for music classification and retrieval
-
H.-T. Cheng, Y.-H. Yang, Y.-C. Lin, I.-B. Liao, and H.-H. Chen, “Automatic chord recognition for music classification and retrieval,” in Proc. IEEE Int. Conf. Multimedia Expo., 2008, pp. 1505–1508.
-
(2008)
Proc. IEEE Int. Conf. Multimedia Expo.
, pp. 1505-1508
-
-
Cheng, H.-T.1
Yang, Y.-H.2
Lin, Y.-C.3
Liao, I.-B.4
Chen, H.-H.5
-
36
-
-
70449572990
-
Exploiting genre for music emotion classification
-
Y.-C. Lin, Y.-H. Yang, and H.-H. Chen, “Exploiting genre for music emotion classification,” in Proc. IEEE Int. Conf. Multimedia Expo., 2009, pp. 618–621.
-
(2009)
Proc. IEEE Int. Conf. Multimedia Expo.
, pp. 618-621
-
-
Lin, Y.-C.1
Yang, Y.-H.2
Chen, H.-H.3
-
37
-
-
70350662406
-
Toward multi-modal music emotion classification
-
Y.-H. Yang, Y.-C. Lin, H.-T. Cheng, I.-B. Liao, Y.-C. Ho, and H.-H. Chen, “Toward multi-modal music emotion classification,” in Proc. Pacific-Rim Conf. Multimedia, 2008, pp. 70–79.
-
(2008)
Proc. Pacific-Rim Conf. Multimedia
, pp. 70-79
-
-
Yang, Y.-H.1
Lin, Y.-C.2
Cheng, H.-T.3
Liao, I.-B.4
Ho, Y.-C.5
Chen, H.-H.6
-
39
-
-
84555199091
-
When lyrics outperform audio for music mood classification: A feature analysis
-
X. Hu and J. S. Downie, “When lyrics outperform audio for music mood classification: A feature analysis,” in Proc. Int. Conf. Music Inf. Retrieval, 2010, pp. 619–624.
-
(2010)
Proc. Int. Conf. Music Inf. Retrieval
, pp. 619-624
-
-
Hu, X.1
Downie, J.S.2
-
40
-
-
84871292332
-
Boosting for multi-modal music emotion classification
-
Q. Lu, X. Chen, D. Yang, and J. Wang, “Boosting for multi-modal music emotion classification,” in Proc. Int. Conf. Music Inf. Retrieval, 2010, pp. 105–110.
-
Proc. Int. Conf. Music Inf. Retrieval
, pp. 105-110
-
-
Lu, Q.1
Chen, X.2
Yang, D.3
Wang, J.4
-
42
-
-
77952100523
-
Mister D.J., cheer me up!': musical and textual features for automatic mood classification
-
B. Schuller, C. Hage, D. Schuller, and G. Rigoll “Mister D.J., cheer me up!': musical and textual features for automatic mood classification,” J. New Music Res., vol. 39, no. 1, pp. 13–34, 2010.
-
(2010)
J. New Music Res.
, vol.39
, Issue.1
, pp. 13-34
-
-
Schuller, B.1
Hage, C.2
Schuller, D.3
Rigoll, G.4
-
43
-
-
77952482069
-
Determination of nonprototypical valence and arousal in popular music: Features and performances
-
Article ID 735854
-
B. Schuller, J. Dorfner, and G. Rigoll, “Determination of nonprototypical valence and arousal in popular music: Features and performances,” EURASIP J. Audio, Speech, Music Process., p. 19, 2010, Article ID 735854.
-
(2010)
EURASIP J. Audio, Speech, Music Process.
, pp. 19
-
-
Schuller, B.1
Dorfner, J.2
Rigoll, G.3
-
48
-
-
25444448065
-
-
Cambridge, MA: MIT Press, [Online]. Available: http://www.gaussianprocess.org/gpml/
-
C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. Cambridge, MA: MIT Press, 2006 [Online]. Available: http://www.gaussianprocess.org/gpml/
-
(2006)
Gaussian Processes for Machine Learning
-
-
Rasmussen, C.1
Williams, C.2
-
49
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik “Support vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, 1995.
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
50
-
-
17444438778
-
New support vector algorithms
-
B. Scholkopf, A. Smola, R. Williamson, and P. Bartlett “New support vector algorithms,” Neural Comput., vol. 12, pp. 1207–1245, 2000.
-
(2000)
Neural Comput.
, vol.12
, pp. 1207-1245
-
-
Scholkopf, B.1
Smola, A.2
Williamson, R.3
Bartlett, P.4
-
52
-
-
0032021555
-
On combining classifiers
-
Mar.
-
J. Kittler, M. Hatef, R. Duin, and J. Matas “On combining classifiers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 3, pp. 226–239, Mar. 1998.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.3
, pp. 226-239
-
-
Kittler, J.1
Hatef, M.2
Duin, R.3
Matas, J.4
-
53
-
-
67650999671
-
Optimal classifier fusion in a non-Bayesian probabilistic framework
-
Sep.
-
O. R. Terrades, E. Valveny, and S. Tabbone “Optimal classifier fusion in a non-Bayesian probabilistic framework,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 9, pp. 1630–1644, Sep. 2009.
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.9
, pp. 1630-1644
-
-
Terrades, O.R.1
Valveny, E.2
Tabbone, S.3
-
54
-
-
0026980924
-
A comparative study of load sharing in heterogeneous multicomputersystems
-
S. A. Banawan and N. M. Zeidat, “A comparative study of load sharing in heterogeneous multicomputersystems,” in Proc. Annu. Simulat. Symp., 1992, pp. 22–31.
-
(1992)
Proc. Annu. Simulat. Symp.
, pp. 22-31
-
-
Banawan, S.A.1
Zeidat, N.M.2
-
56
-
-
84946031884
-
Procedures for detecting outlying observations in samples
-
F. E. Grubbs, “Procedures for detecting outlying observations in samples,” Technometrics, vol. 11, no. 1, pp. 1–21, 1969.
-
(1969)
Technometrics
, vol.11
, Issue.1
, pp. 1-21
-
-
Grubbs, F.E.1
-
57
-
-
0034543675
-
Cue utilization in communication of emotion in music performance: Relating performance to perception
-
P. N. Juslin “Cue utilization in communication of emotion in music performance: Relating performance to perception,” J. Exper. Psychol.: Human Percept. Perform., vol. 16, no. 6, pp. 1797–1813, 2000.
-
(2000)
J. Exper. Psychol.: Human Percept. Perform.
, vol.16
, Issue.6
, pp. 1797-1813
-
-
Juslin, P.N.1
-
58
-
-
0036555380
-
Music: A link between cognition and emotion
-
C. Krumhansl, “Music: A link between cognition and emotion,” Current Direct. Psychol. Sci., vol. 11, no. 2, pp. 45–50, 2002.
-
(2002)
Current Direct. Psychol. Sci.
, vol.11
, Issue.2
, pp. 45-50
-
-
Krumhansl, C.1
-
59
-
-
1642325338
-
The influence of musical structure on emotional expression
-
P. N. Juslin and J. A. Sloboda, Eds. New York: Oxford Univ. Press
-
A. Gabrielsson and E. Lindström, “The influence of musical structure on emotional expression,” in Music and Emotion: Theory and Research, P. N. Juslin and J. A. Sloboda, Eds. New York: Oxford Univ. Press, 2001.
-
(2001)
Music and Emotion: Theory and Research
-
-
Gabrielsson, A.1
Lindström, E.2
-
60
-
-
84873572465
-
MIR in Matlab (II): A toolbox for musical feature extraction from audio
-
[Online]. Available: http://users.jyu.fi/lartillo/mirtoolbox/
-
O. Lartillot and P. Toiviainen, “MIR in Matlab (II): A toolbox for musical feature extraction from audio,” in Proc. Int. Conf. Music Inf. Retrieval, 2007, pp. 127–130 [Online]. Available: http://users.jyu.fi/lartillo/mirtoolbox/
-
(2007)
Proc. Int. Conf. Music Inf. Retrieval
, pp. 127-130
-
-
Lartillot, O.1
Toiviainen, P.2
-
61
-
-
49549085544
-
Temporal feature integration for music genre classification
-
Jul.
-
A. Meng, P. Ahrendt, J. Larsen, and L. K. Hansen “Temporal feature integration for music genre classification,” IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no. 5, pp. 1654–1663, Jul. 2007.
-
(2007)
IEEE Trans. Audio, Speech, Lang. Process.
, vol.15
, Issue.5
, pp. 1654-1663
-
-
Meng, A.1
Ahrendt, P.2
Larsen, J.3
Hansen, L.K.4
-
62
-
-
0036648502
-
Musical genre classification of audio signals
-
Jul.
-
G. Tzanetakis and P. Cook, “Musical genre classification of audio signals,” IEEE Trans. Speech Audio Process., vol. 10, no. 5, pp. 293–302, Jul. 2002.
-
(2002)
IEEE Trans. Speech Audio Process.
, vol.10
, Issue.5
, pp. 293-302
-
-
Tzanetakis, G.1
Cook, P.2
-
63
-
-
33744781081
-
A Matlab toolbox to compute music similarity from audio
-
[Online]. Available: http://www.ofai.at/~elias.pampalk/ma/
-
E. Pampalk, “A Matlab toolbox to compute music similarity from audio,” in Proc. Int. Conf. Music Information Retrieval, 2004 [Online]. Available: http://www.ofai.at/~elias.pampalk/ma/
-
(2004)
Proc. Int. Conf. Music Information Retrieval
-
-
Pampalk, E.1
-
64
-
-
84900032498
-
Large scale musical instrument identification
-
[Online]. Available: http://www.ifs.tuwien.ac.at/mir/muscle/del/audio tools.html#SoundDescrToolbox
-
E. Benetos, M. Kotti, and C. Kotropoulos, “Large scale musical instrument identification,” in Proc. Int. Conf. Music Inf. Retrieval, 2007 [Online]. Available: http://www.ifs.tuwien.ac.at/mir/muscle/del/audio tools.html#SoundDescrToolbox
-
(2007)
Proc. Int. Conf. Music Inf. Retrieval
-
-
Benetos, E.1
Kotti, M.2
Kotropoulos, C.3
-
65
-
-
84873536955
-
Evaluation of feature extractors and psychoacoustic transformations for music genre classification
-
[Online]. Available: http://www.ifs.tuwien.ac.at/mir/audiofeatureextraction.html
-
T. Lidy and A. Rauber, “Evaluation of feature extractors and psychoacoustic transformations for music genre classification,” in Proc. Int. Conf. Music Inf. Retrieval, 2005, pp. 34–41 [Online]. Available: http://www.ifs.tuwien.ac.at/mir/audiofeatureextraction.html
-
(2005)
Proc. Int. Conf. Music Inf. Retrieval
, pp. 34-41
-
-
Lidy, T.1
Rauber, A.2
-
67
-
-
0034319894
-
A computationally efficient multipitch analysis model
-
Nov.
-
T. Tolonen and M. Karjalainen “A computationally efficient multipitch analysis model,” IEEE Trans. Speech Audio Process., vol. 8, no. 6, pp. 708–716, Nov. 2000.
-
(2000)
IEEE Trans. Speech Audio Process.
, vol.8
, Issue.6
, pp. 708-716
-
-
Tolonen, T.1
Karjalainen, M.2
-
68
-
-
36549057588
-
-
Ph.D. dissertation, Univ. Pompeu Fabra, Barcelona, Spain
-
E. Gómez, “Tonal description of music audio signal,” Ph.D. dissertation, Univ. Pompeu Fabra, Barcelona, Spain, 2006.
-
(2006)
Tonal description of music audio signal
-
-
Gómez, E.1
-
69
-
-
34547448244
-
Detecting harmonic change in musical audio
-
C. Harte, M. Sandler, and M. Gasser, “Detecting harmonic change in musical audio,” in Proc. ACM Workshop Audio Music Comput. Multimedia, 2006, pp. 21–26.
-
(2006)
Proc. ACM Workshop Audio Music Comput. Multimedia
, pp. 21-26
-
-
Harte, C.1
Sandler, M.2
Gasser, M.3
-
70
-
-
4243152700
-
Content-based identification of audio material using MPEG-7 low level description
-
E. Allamanche, J. Herre, O. Helmuth, B. Froba, T. Kasten, and M. Cremer, “Content-based identification of audio material using MPEG-7 low level description,” in Proc. Int. Conf. Music Inf. Retrieval, 2001, pp. 197–204.
-
(2001)
Proc. Int. Conf. Music Inf. Retrieval
, pp. 197-204
-
-
Allamanche, E.1
Herre, J.2
Helmuth, O.3
Froba, B.4
Kasten, T.5
Cremer, M.6
-
72
-
-
53349124705
-
Songs and emotions: Are lyrics and melodies equal partners
-
S. O. Ali “Songs and emotions: Are lyrics and melodies equal partners,” Psychol. Music, vol. 34, no. 4, pp. 511–534, 2006.
-
(2006)
Psychol. Music
, vol.34
, Issue.4
, pp. 511-534
-
-
Ali, S.O.1
-
73
-
-
0002442796
-
Machine learning in automated text categorization
-
F. Sebastiani “Machine learning in automated text categorization,” ACM Comput. Surveys, vol. 34, no. 1, pp. 1–47, 2002.
-
(2002)
ACM Comput. Surveys
, vol.34
, Issue.1
, pp. 1-47
-
-
Sebastiani, F.1
-
74
-
-
0034313871
-
The earth mover's distance as a metric for image retrieval
-
Y. Rubner, C. Tomasi, and L. J. Guibas “The earth mover's distance as a metric for image retrieval,” Int. J. Comput. Vis., vol. 40, no. 2, pp. 99–121, 2000.
-
(2000)
Int. J. Comput. Vis.
, vol.40
, Issue.2
, pp. 99-121
-
-
Rubner, Y.1
Tomasi, C.2
Guibas, L.J.3
-
76
-
-
84899013108
-
On spectral clustering: Analysis and an algorithm
-
A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and an algorithm,” Proc. Neural Inf. Process. Syst., pp. 849–856, 2002.
-
(2002)
Proc. Neural Inf. Process. Syst.
, pp. 849-856
-
-
Ng, A.Y.1
Jordan, M.I.2
Weiss, Y.3
-
77
-
-
28444449880
-
Graphviz—open source graph drawing tools
-
[Online]. Available: http://www.graphviz.org/
-
J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull, “Graphviz—open source graph drawing tools,” in Proc. Graph Drawing, 2001, pp. 483–484 [Online]. Available: http://www.graphviz.org/
-
(2001)
Proc. Graph Drawing
, pp. 483-484
-
-
Ellson, J.1
Gansner, E.R.2
Koutsofios, E.3
North, S.C.4
Woodhull, G.5
-
78
-
-
33749261433
-
Image deformation using moving least squares
-
S. Schaefer, T. McPhail, and J. Warren “Image deformation using moving least squares,” ACM Trans. Graphics, vol. 25, no. 3, pp. 533–540, 2006.
-
(2006)
ACM Trans. Graphics
, vol.25
, Issue.3
, pp. 533-540
-
-
Schaefer, S.1
McPhail, T.2
Warren, J.3
-
79
-
-
13144279345
-
Affective video content representation and modeling
-
A. Hanjalic and L.-Q. Xu, “Affective video content representation and modeling,” IEEE Trans. Multimedia, vol. 7, pp. 143–154, 2005.
-
(2005)
IEEE Trans. Multimedia
, vol.7
, pp. 143-154
-
-
Hanjalic, A.1
Xu, L.-Q.2
-
80
-
-
85161977902
-
Multitask Gaussian process prediction
-
E. V. Bonilla, K. M. A. Chai, and C. K. I. Williams, “Multitask Gaussian process prediction,” in Proc. Conf. Neural Inf. Process. Syst., 2008, pp. 164–170.
-
(2008)
Proc. Conf. Neural Inf. Process. Syst.
, pp. 164-170
-
-
Bonilla, E.V.1
Chai, K.M.A.2
Williams, C.K.I.3
|