메뉴 건너뛰기




Volumn , Issue , 2014, Pages 4077-4081

Recurrent conditional random field for language understanding

Author keywords

Conditional random fields; recurrent neural networks

Indexed keywords

ADVANCED TRAVELER INFORMATION SYSTEMS; CHARACTER RECOGNITION; COMPUTATIONAL LINGUISTICS; IMAGE SEGMENTATION; RECURRENT NEURAL NETWORKS; SIGNAL PROCESSING; WORLD WIDE WEB;

EID: 84905222853     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2014.6854368     Document Type: Conference Paper
Times cited : (138)

References (44)
  • 2
    • 80051643236 scopus 로고    scopus 로고
    • Extensions of recurrent neural network based language model
    • T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and S. Khudanpur, "Extensions of recurrent neural network based language model," in ICASSP, 2011, pp. 5528-5531.
    • (2011) ICASSP , pp. 5528-5531
    • Mikolov, T.1    Kombrink, S.2    Burget, L.3    Cernocky, J.4    Khudanpur, S.5
  • 3
    • 84865803833 scopus 로고    scopus 로고
    • Empirical evaluation and combination of advanced language modeling techniques
    • T. Mikolov, A. Deoras, S. Kombrink, L. Burget, and J. Cernocky, "Empirical evaluation and combination of advanced language modeling techniques," in INTERSPEECH, 2011, pp. 605-608.
    • (2011) INTERSPEECH , pp. 605-608
    • Mikolov, T.1    Deoras, A.2    Kombrink, S.3    Burget, L.4    Cernocky, J.5
  • 4
    • 84858966958 scopus 로고    scopus 로고
    • Strategies for training large scale neural network language models
    • T. Mikolov, A. Deoras, D. Povey, L. Burget, and J. Cernocky, "Strategies for training large scale neural network language models," in ASRU, 2011.
    • (2011) ASRU
    • Mikolov, T.1    Deoras, A.2    Povey, D.3    Burget, L.4    Cernocky, J.5
  • 5
    • 84874235486 scopus 로고    scopus 로고
    • Context dependent recurrent neural network language model
    • T. Mikolov and G. Zweig, "Context dependent recurrent neural network language model," in Proc. SLT, 2012, pp. 234-239.
    • (2012) Proc. SLT , pp. 234-239
    • Mikolov, T.1    Zweig, G.2
  • 7
    • 84904483474 scopus 로고    scopus 로고
    • Recurrent neural networks for language understanding
    • K. Yao, G. Zweig, M. Hwang, Y. Shi, and Dong Yu, "Recurrent neural networks for language understanding," in INTERSPEECH, 2013.
    • (2013) INTERSPEECH
    • Yao, K.1    Zweig, G.2    Hwang, M.3    Shi, Y.4    Yu, D.5
  • 8
    • 84906237242 scopus 로고    scopus 로고
    • Investigation of recurrentneural-network architectures and learning methods for language understanding
    • G. Mesnil, X. He, L. Deng, and Y. Bengio, "Investigation of recurrentneural-network architectures and learning methods for language understanding," in INTERSPEECH, 2013.
    • (2013) INTERSPEECH
    • Mesnil, G.1    He, X.2    Deng, L.3    Bengio, Y.4
  • 9
    • 84926321124 scopus 로고    scopus 로고
    • Joint language and translation modeling with recurrent neural networks
    • M. Auli, M. Galley, C. Quirk, and G. Zweig, "Joint language and translation modeling with recurrent neural networks," in EMNLP, 2013.
    • (2013) EMNLP
    • Auli, M.1    Galley, M.2    Quirk, C.3    Zweig, G.4
  • 10
    • 0036293862 scopus 로고    scopus 로고
    • Connectionist language modeling for large vocabulary continuous speech recognition
    • H. Schwenk and J.L. Gauvain, "Connectionist language modeling for large vocabulary continuous speech recognition," in ICASSP. IEEE, 2002, vol. 1, pp. I-765.
    • (2002) ICASSP. IEEE , vol.1
    • Schwenk, H.1    Gauvain, J.L.2
  • 12
    • 33847610331 scopus 로고    scopus 로고
    • Continuous space language models
    • H. Schwenk, "Continuous space language models," Computer Speech and Language, vol. 21, no. 3, pp. 492-518, 2007.
    • (2007) Computer Speech and Language , vol.21 , Issue.3 , pp. 492-518
    • Schwenk, H.1
  • 13
    • 80051619076 scopus 로고    scopus 로고
    • Structured output layer neural network language model
    • H.-S. Le, I. Oparin, A. Allauzen, J.-L. Gauvain, and F. Yvon, "Structured output layer neural network language model," in ICASSP, 2011, pp. 5524-5527.
    • (2011) ICASSP , pp. 5524-5527
    • Le, H.-S.1    Oparin, I.2    Allauzen, A.3    Gauvain, J.-L.4    Yvon, F.5
  • 15
    • 84926179397 scopus 로고    scopus 로고
    • Linguistic regularities in continuous space word representations
    • T. Mikolov, W.T. Yih, and G. Zweig, "Linguistic regularities in continuous space word representations," in NAACL-HLT, 2013.
    • (2013) NAACL-HLT
    • Mikolov, T.1    Yih, W.T.2    Zweig, G.3
  • 18
    • 0000681602 scopus 로고
    • The CMU air travel information service: Understanding spontaneous speech
    • W. Ward et al., "The CMU air travel information service: Understanding spontaneous speech," in Proceedings of the DARPA Speech and Natural Language Workshop, 1990, pp. 127-129.
    • (1990) Proceedings of the DARPA Speech and Natural Language Workshop , pp. 127-129
    • Ward, W.1
  • 19
    • 84905239235 scopus 로고    scopus 로고
    • A data-driven spoken language understanding system
    • Y. He and S. Young, "A data-driven spoken language understanding system," in ASRU, 2003, pp. 583-588.
    • (2003) ASRU , pp. 583-588
    • He, Y.1    Young, S.2
  • 20
    • 43849110896 scopus 로고    scopus 로고
    • Generative and discriminative algorithms for spoken language understanding
    • C. Raymond and G. Riccardi, "Generative and discriminative algorithms for spoken language understanding," INTERSPEECH, pp. 1605-1608, 2007.
    • (2007) INTERSPEECH , pp. 1605-1608
    • Raymond, C.1    Riccardi, G.2
  • 21
    • 44849105561 scopus 로고    scopus 로고
    • Spoken language understanding: A survey
    • R. De Mori, "Spoken language understanding: A survey," in ASRU, 2007, pp. 365-376.
    • (2007) ASRU , pp. 365-376
    • De Mori, R.1
  • 22
    • 77952047108 scopus 로고    scopus 로고
    • Processing spontaneous speech in deployed spoken language understanding systems: A survey
    • F. Béchet, "Processing spontaneous speech in deployed spoken language understanding systems: A survey," SLT, vol. 1, 2008.
    • (2008) SLT , vol.1
    • Béchet, F.1
  • 23
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira, "Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data," in ICML, 2001, pp. 282-289.
    • (2001) ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 24
    • 85119967391 scopus 로고    scopus 로고
    • Combining statistical and knowledge-based spoken language understanding in conditional models
    • Y.-Y. Wang, A. Acero, M. Mahajan, and J. Lee, "Combining statistical and knowledge-based spoken language understanding in conditional models," in COLING/ACL, 2006, pp. 882-889.
    • (2006) COLING/ACL , pp. 882-889
    • Wang, Y.-Y.1    Acero, A.2    Mahajan, M.3    Lee, J.4
  • 25
    • 43849091935 scopus 로고    scopus 로고
    • Spoken language understanding with kernels for syntactic/semantic structures
    • A. Moschitti, G. Riccardi, and C. Raymond, "Spoken language understanding with kernels for syntactic/semantic structures," in ASRU, 2007, pp. 183-188.
    • (2007) ASRU , pp. 183-188
    • Moschitti, A.1    Riccardi, G.2    Raymond, C.3
  • 26
    • 85124016637 scopus 로고    scopus 로고
    • A maximum entropy model for part-of-speech tagging
    • A. Ratnaparkhi, "A maximum entropy model for part-of-speech tagging," in Proc. EMNLP, 1996.
    • (1996) Proc. EMNLP
    • Ratnaparkhi, A.1
  • 28
    • 0004121079 scopus 로고
    • Tech. Rep. 8604, Institute for Cognitive Science, University of California at San Diego
    • M. Jordan, "Serial order: A parallel distributed processing approach," Tech. Rep. 8604, Institute for Cognitive Science, University of California at San Diego, 1986.
    • (1986) Serial Order: A Parallel Distributed Processing Approach
    • Jordan, M.1
  • 30
    • 79959840616 scopus 로고    scopus 로고
    • Investigation of full-sequence training of deep belief networks for speech recognition
    • A.-R. Mohamed, D. Yu, and L. Deng, "Investigation of full-sequence training of deep belief networks for speech recognition," in INTERSPEECH, 2010, pp. 2846-2849.
    • (2010) INTERSPEECH , pp. 2846-2849
    • Mohamed, A.-R.1    Yu, D.2    Deng, L.3
  • 33
    • 78649308591 scopus 로고    scopus 로고
    • Sequential labeling using deepstructured conditional random fields
    • D. Yu, S. Wang, and L. Deng, "Sequential labeling using deepstructured conditional random fields," Journal of Selected Topics in Signal Processing, vol. 4, no. 6, pp. 965-973, 2010.
    • (2010) Journal of Selected Topics in Signal Processing , vol.4 , Issue.6 , pp. 965-973
    • Yu, D.1    Wang, S.2    Deng, L.3
  • 34
    • 84893638645 scopus 로고    scopus 로고
    • Convolutional neural network based triangular CRF for joint intent detection and slot filling
    • P. Xu and R. Sarikaya, "Convolutional neural network based triangular CRF for joint intent detection and slot filling," in ASRU, 2013.
    • (2013) ASRU
    • Xu, P.1    Sarikaya, R.2
  • 35
    • 84906274730 scopus 로고    scopus 로고
    • Sequencediscriminative training of deep neural networks
    • K. Vesely, A. Ghoshal, L. Burget, and D. Povey, "Sequencediscriminative training of deep neural networks," in INTERSPEECH, 2013.
    • (2013) INTERSPEECH
    • Vesely, K.1    Ghoshal, A.2    Burget, L.3    Povey, D.4
  • 36
    • 84878379108 scopus 로고    scopus 로고
    • Scalable minimum Bayes risk training of deep neural network acoustic models using distributed Hessian-free optimization
    • B. Kingsbury, T. N. Sainath, and H. Soltau, "Scalable minimum Bayes risk training of deep neural network acoustic models using distributed Hessian-free optimization," in INTERSPEECH, 2012.
    • (2012) INTERSPEECH
    • Kingsbury, B.1    Sainath, T.N.2    Soltau, H.3
  • 37
    • 84890543852 scopus 로고    scopus 로고
    • Error back propagation for sequence training of context-dependent deep neural networks for conversational speech transcription
    • H. Su, G. Li, D. Yu, and F. Seide, "Error back propagation for sequence training of context-dependent deep neural networks for conversational speech transcription," in ICASSP, 2013.
    • (2013) ICASSP
    • Su, H.1    Li, G.2    Yu, D.3    Seide, F.4
  • 38
    • 26444565569 scopus 로고
    • Finding structure in time
    • J.L. Elman, "Finding structure in time," Cognitive Science, vol. 14, no. 2, pp. 179-211, 1990.
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 39
    • 84898962087 scopus 로고    scopus 로고
    • Semi-Markov conditional random fields for information extraction
    • S. Sarawagi andW. Cohen, "Semi-Markov Conditional Random Fields for Information Extraction," in Proc. NIPS, 2005.
    • (2005) Proc. NIPS
    • Sarawagi, S.1    Cohen, W.2
  • 41
    • 0036289732 scopus 로고    scopus 로고
    • Evaluation of spoken language grammar learning in the ATIS domain
    • Y.-Y. Wang and A. Acero, "Evaluation of spoken language grammar learning in the ATIS domain," in ICASSP, 2002.
    • (2002) ICASSP
    • Wang, Y.-Y.1    Acero, A.2
  • 43
    • 80051639097 scopus 로고    scopus 로고
    • Sentence simplification for spoken language understanding
    • G. Tur, D. Hakkani-Tur, L. Heck, and S. Parthasarathy, "Sentence simplification for spoken language understanding," in ICASSP, 2011, pp. 5628-5631.
    • (2011) ICASSP , pp. 5628-5631
    • Tur, G.1    Hakkani-Tur, D.2    Heck, L.3    Parthasarathy, S.4
  • 44
    • 84874256530 scopus 로고    scopus 로고
    • Use of kernal deep convex networks and end-to-end learning for spoken language understanding
    • L. Deng, G. Tur, X. He, and D. Hakkani-Tur, "Use of kernal deep convex networks and end-to-end learning for spoken language understanding," in SLT. IEEE, 2013, pp. 210-215.
    • (2013) SLT. IEEE , pp. 210-215
    • Deng, L.1    Tur, G.2    He, X.3    Hakkani-Tur, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.