메뉴 건너뛰기




Volumn 55, Issue 7, 2014, Pages 1583-1587

Comments on "learning from imprecise and fuzzy observations: Data disambiguation through generalized loss minimization" by Eyke Hüllermeier

Author keywords

Classification; Fuzzy data; Imprecise data; Loss functions; Machine learning; Regression

Indexed keywords

CLASSIFICATION (OF INFORMATION); LEARNING SYSTEMS;

EID: 84905123148     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2014.04.008     Document Type: Note
Times cited : (2)

References (10)
  • 1
    • 73149110370 scopus 로고    scopus 로고
    • A multiple imputation approach to the analysis of interval-censored failure time data with the additive hazards model
    • L. Chen, and J. Sun A multiple imputation approach to the analysis of interval-censored failure time data with the additive hazards model Comput. Stat. Data Anal. 54 4 Apr. 2010 1109 1116
    • (2010) Comput. Stat. Data Anal. , vol.54 , Issue.4 , pp. 1109-1116
    • Chen, L.1    Sun, J.2
  • 2
    • 84905111276 scopus 로고    scopus 로고
    • Learning from imprecise and fuzzy observations: Data disambiguation through generalized loss minimization
    • 10.1016/j.ijar.2013.09.003 (in this issue)
    • E. Hüllermeier Learning from imprecise and fuzzy observations: data disambiguation through generalized loss minimization Int. J. Approx. Reason. 55 7 2014 1519 1534 10.1016/j.ijar.2013.09.003 (in this issue)
    • (2014) Int. J. Approx. Reason. , vol.55 , Issue.7 , pp. 1519-1534
    • Hüllermeier, E.1
  • 3
    • 22744456511 scopus 로고    scopus 로고
    • Multi-objective optimization of problems with epistemic uncertainty
    • Evolutionary Multi-Criterion Optimization - Third International Conference, EMO 2005
    • P. Limbourg Multi-objective optimization of problems with epistemic uncertainty Lect. Notes Comput. Sci. vol. 3410 2005 413 427 (Pubitemid 41251780)
    • (2005) Lecture Notes in Computer Science , vol.3410 , pp. 413-427
    • Limbourg, P.1
  • 4
    • 84972537494 scopus 로고
    • Multiple-imputation inferences with uncongenial sources of input (with discussion)
    • X.L. Meng Multiple-imputation inferences with uncongenial sources of input (with discussion) Stat. Sci. 10 1995 538 573
    • (1995) Stat. Sci. , vol.10 , pp. 538-573
    • Meng, X.L.1
  • 5
    • 0030539070 scopus 로고    scopus 로고
    • Multiple imputation after 18+ years
    • D.B. Rubin Multiple imputation after 18+ years J. Am. Stat. Assoc. 91 434 Jun. 1996 473 489
    • (1996) J. Am. Stat. Assoc. , vol.91 , Issue.434 , pp. 473-489
    • Rubin, D.B.1
  • 6
    • 0033740103 scopus 로고    scopus 로고
    • Interval-valued GA-P algorithms
    • L. Sánchez Interval-valued GA-P algorithms IEEE Trans. Evol. Comput. 4 1 2000 64 72
    • (2000) IEEE Trans. Evol. Comput. , vol.4 , Issue.1 , pp. 64-72
    • Sánchez, L.1
  • 7
  • 8
    • 34548230003 scopus 로고    scopus 로고
    • Advocating the use of imprecisely observed data in genetic fuzzy systems
    • DOI 10.1109/TFUZZ.2007.895942
    • L. Sánchez, and I. Couso Advocating the use of imprecisely observed data in genetic fuzzy systems IEEE Trans. Fuzzy Syst. 15 4 2007 551 562 (Pubitemid 47316709)
    • (2007) IEEE Transactions on Fuzzy Systems , vol.15 , Issue.4 , pp. 551-562
    • Sanchez, L.1    Couso, I.2
  • 9
    • 58049213924 scopus 로고    scopus 로고
    • Genetic learning of fuzzy rules based on low quality data
    • L. Sánchez, I. Couso, and J. Casillas Genetic learning of fuzzy rules based on low quality data Fuzzy Sets Syst. 160 17 Sep. 2009 2524 2552
    • (2009) Fuzzy Sets Syst. , vol.160 , Issue.17 , pp. 2524-2552
    • Sánchez, L.1    Couso, I.2    Casillas, J.3
  • 10
    • 28444485368 scopus 로고    scopus 로고
    • Multiple imputation in multivariate problems when the imputation and analysis models differ
    • DOI 10.1111/1467-9574.00218
    • J.L. Schafer Multiple imputation in multivariate problems when the imputation and analysis models differ Stat. Neerl. 57 1 2003 19 35 (Pubitemid 41724435)
    • (2003) Statistica Neerlandica , vol.57 , Issue.1 , pp. 19-35
    • Schafer, J.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.