-
1
-
-
48749133278
-
-
SCIEAS 0036-8075 10.1126/science.1158736
-
J. Miller and P. Simon, Science 321, 651 (2008). SCIEAS 0036-8075 10.1126/science.1158736
-
(2008)
Science
, vol.321
, pp. 651
-
-
Miller, J.1
Simon, P.2
-
2
-
-
84891582439
-
-
(John Wiley & Sons, New York).
-
M. Lu, F. Beguin, and E. Frackowiak, Supercapacitors: Materials, Systems and Applications (John Wiley & Sons, New York, 2013).
-
(2013)
Supercapacitors: Materials, Systems and Applications
-
-
Lu, M.1
Beguin, F.2
Frackowiak, E.3
-
4
-
-
54949139227
-
-
NMAACR 1476-1122 10.1038/nmat2297
-
P. Simon and Y. Gogotsi, Nat. Mater. 7, 845 (2008). NMAACR 1476-1122 10.1038/nmat2297
-
(2008)
Nat. Mater.
, vol.7
, pp. 845
-
-
Simon, P.1
Gogotsi, Y.2
-
5
-
-
84878230759
-
-
ACHRE4 0001-4842 10.1021/ar200306b
-
P. Simon and Y. Gogotsi, Acc. Chem. Res. 46, 1094 (2013). ACHRE4 0001-4842 10.1021/ar200306b
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 1094
-
-
Simon, P.1
Gogotsi, Y.2
-
6
-
-
0034324931
-
-
JPSODZ 0378-7753 10.1016/S0378-7753(00)00485-7
-
A. Burke, J. Power Sources 91, 37 (2000). JPSODZ 0378-7753 10.1016/S0378-7753(00)00485-7
-
(2000)
J. Power Sources
, vol.91
, pp. 37
-
-
Burke, A.1
-
7
-
-
37349106546
-
-
IEEPAD 0018-9219 10.1109/JPROC.2007.892490
-
A. Burke, Proc. IEEE 95, 806 (2007). IEEPAD 0018-9219 10.1109/JPROC.2007.892490
-
(2007)
Proc. IEEE
, vol.95
, pp. 806
-
-
Burke, A.1
-
8
-
-
77955493138
-
-
PTRMAD 1364-503X 10.1098/rsta.2010.0109
-
P. Simon and Y. Gogotsi, Phil. Trans. R. Soc. A 368, 3457 (2010). PTRMAD 1364-503X 10.1098/rsta.2010.0109
-
(2010)
Phil. Trans. R. Soc. A
, vol.368
, pp. 3457
-
-
Simon, P.1
Gogotsi, Y.2
-
9
-
-
33749007675
-
Anomalous increase in carbon at pore sizes less than 1 nanometer
-
DOI 10.1126/science.1132195
-
J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P. Taberna, Science 313, 1760 (2006). SCIEAS 0036-8075 10.1126/science.1132195 (Pubitemid 44454146)
-
(2006)
Science
, vol.313
, Issue.5794
, pp. 1760-1763
-
-
Chmiola, J.1
Yushin, G.2
Gogotsi, Y.3
Portet, C.4
Simon, P.5
Taberna, P.L.6
-
10
-
-
40949121029
-
Relation between the ion size and pore size for an electric double-layer capacitor
-
DOI 10.1021/ja7106178
-
C. Largeot, C. Portet, J. Chmiola, P. Taberna, Y. Gogotsi, and P. Simon, J. Am. Chem. Soc. 130, 2730 (2008). JACSAT 0002-7863 10.1021/ja7106178 (Pubitemid 351416213)
-
(2008)
Journal of the American Chemical Society
, vol.130
, Issue.9
, pp. 2730-2731
-
-
Largeot, C.1
Portet, C.2
Chmiola, J.3
Taberna, P.-L.4
Gogotsi, Y.5
Simon, P.6
-
11
-
-
69949165061
-
-
ELCAAV 0013-4686 10.1016/j.electacta.2009.07.015
-
R. Lin, P. Huang, J. Segalini, C. Largeot, P.-L. Taberna, J. Chmiola, Y. Gogotsi, and P. Simon, Electrochim. Acta 54, 7025 (2009). ELCAAV 0013-4686 10.1016/j.electacta.2009.07.015
-
(2009)
Electrochim. Acta
, vol.54
, pp. 7025
-
-
Lin, R.1
Huang, P.2
Segalini, J.3
Largeot, C.4
Taberna, P.-L.5
Chmiola, J.6
Gogotsi, Y.7
Simon, P.8
-
12
-
-
78651476889
-
-
JCOMEL 0953-8984 10.1088/0953-8984/23/2/022201
-
S. Kondrat and A. Kornyshev, J. Phys. Condens. Matter 23, 022201 (2011). JCOMEL 0953-8984 10.1088/0953-8984/23/2/022201
-
(2011)
J. Phys. Condens. Matter
, vol.23
, pp. 022201
-
-
Kondrat, S.1
Kornyshev, A.2
-
13
-
-
79960738671
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.83.056102
-
B. Skinner, T. Chen, M.S. Loth, and B.I. Shklovskii, Phys. Rev. E 83, 056102 (2011). PLEEE8 1539-3755 10.1103/PhysRevE.83.056102
-
(2011)
Phys. Rev. e
, vol.83
, pp. 056102
-
-
Skinner, B.1
Chen, T.2
Loth, M.S.3
Shklovskii, B.I.4
-
14
-
-
40949155769
-
Theoretical model for nanoporous carbon supercapacitors
-
DOI 10.1002/anie.200703864
-
J. Huang, B. Sumpter, and V. Meunier, Angew. Chem., Int. Ed. 47, 520 (2008). ACIEF5 1433-7851 10.1002/anie.200703864 (Pubitemid 351412333)
-
(2008)
Angewandte Chemie - International Edition
, vol.47
, Issue.3
, pp. 520-524
-
-
Huang, J.1
Sumpter, B.G.2
Meunier, V.3
-
15
-
-
72949118272
-
-
PPCPFQ 1463-9076 10.1039/b917592j
-
J. Vatamanu, O. Borodin, and G. Smith, Phys. Chem. Chem. Phys., 12, 170 (2010). PPCPFQ 1463-9076 10.1039/b917592j
-
(2010)
Phys. Chem. Chem. Phys.
, vol.12
, pp. 170
-
-
Vatamanu, J.1
Borodin, O.2
Smith, G.3
-
16
-
-
53849083762
-
-
CEUJED 0947-6539 10.1002/chem.200800639
-
J. Huang, B. Sumpter, and V. Meunier, Chem. Eur. J. 14, 6614 (2008). CEUJED 0947-6539 10.1002/chem.200800639
-
(2008)
Chem. Eur. J.
, vol.14
, pp. 6614
-
-
Huang, J.1
Sumpter, B.2
Meunier, V.3
-
17
-
-
77957994593
-
-
JPCCCK 1932-7447 10.1021/jp107125m 012
-
G. Feng, R. Qiao, J. Huang, B. Sumpter, and V. Meunier, J. Phys. Chem. C 114, 18 012 (2010). JPCCCK 1932-7447 10.1021/jp107125m
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 18
-
-
Feng, G.1
Qiao, R.2
Huang, J.3
Sumpter, B.4
Meunier, V.5
-
18
-
-
77951740339
-
-
ANCAC3 1936-0851 10.1021/nn100126w
-
G. Feng, R. Qiao, J. Huang, B. Sumpter, and V. Meunier, ACS Nano 4, 2382 (2010). ANCAC3 1936-0851 10.1021/nn100126w
-
(2010)
ACS Nano
, vol.4
, pp. 2382
-
-
Feng, G.1
Qiao, R.2
Huang, J.3
Sumpter, B.4
Meunier, V.5
-
19
-
-
78651287572
-
-
PLEEE8 1539-3755 10.1103/PhysRevE.82.056102
-
M.S. Loth, B. Skinner, and B.I. Shklovskii, Phys. Rev. E 82, 056102 (2010). PLEEE8 1539-3755 10.1103/PhysRevE.82.056102
-
(2010)
Phys. Rev. e
, vol.82
, pp. 056102
-
-
Loth, M.S.1
Skinner, B.2
Shklovskii, B.I.3
-
20
-
-
81855227219
-
-
ANCAC3 1936-0851 10.1021/nn203260w
-
P. Wu, J. Huang, V. Meunier, B. Sumpter, and R. Qiao, ACS Nano 5, 9044 (2011). ANCAC3 1936-0851 10.1021/nn203260w
-
(2011)
ACS Nano
, vol.5
, pp. 9044
-
-
Wu, P.1
Huang, J.2
Meunier, V.3
Sumpter, B.4
Qiao, R.5
-
21
-
-
79958025574
-
-
PPCPFQ 1463-9076 10.1039/c1cp20798a 359
-
S. Kondrat, N. Georgi, M. Fedorov, and A. Kornyshev, Phys. Chem. Chem. Phys. 13, 11 359 (2011). PPCPFQ 1463-9076 10.1039/c1cp20798a
-
(2011)
Phys. Chem. Chem. Phys.
, vol.13
, pp. 11
-
-
Kondrat, S.1
Georgi, N.2
Fedorov, M.3
Kornyshev, A.4
-
22
-
-
84858798302
-
-
NMAACR 1476-1122 10.1038/nmat3260
-
C. Merlet, B. Rotenberg, P. Madden, P. Taberna, P. Simon, Y. Gogotsi, and M. Salanne, Nat. Mater. 11, 306 (2012). NMAACR 1476-1122 10.1038/nmat3260
-
(2012)
Nat. Mater.
, vol.11
, pp. 306
-
-
Merlet, C.1
Rotenberg, B.2
Madden, P.3
Taberna, P.4
Simon, P.5
Gogotsi, Y.6
Salanne, M.7
-
25
-
-
84858189034
-
-
JCPSA6 0021-9606 10.1063/1.3690084
-
K. Kiyohara, H. Shioyama, T. Sugino, and K. Asaka, J. Chem. Phys. 136, 094701 (2012). JCPSA6 0021-9606 10.1063/1.3690084
-
(2012)
J. Chem. Phys.
, vol.136
, pp. 094701
-
-
Kiyohara, K.1
Shioyama, H.2
Sugino, T.3
Asaka, K.4
-
26
-
-
84889631832
-
-
FDISE6 1359-6640 10.1039/c3fd00026e
-
A.A. Kornyshev, Faraday Discuss. 164, 117 (2013). FDISE6 1359-6640 10.1039/c3fd00026e
-
(2013)
Faraday Discuss.
, vol.164
, pp. 117
-
-
Kornyshev, A.A.1
-
27
-
-
84863607647
-
-
JPCLCD 1948-7185 10.1021/jz300506j
-
P. Wu, J. Huang, V. Meunier, B. Sumpter, and R. Qiao, J. Phys. Chem. Lett. 3, 1732 (2012). JPCLCD 1948-7185 10.1021/jz300506j
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 1732
-
-
Wu, P.1
Huang, J.2
Meunier, V.3
Sumpter, B.4
Qiao, R.5
-
28
-
-
84872180273
-
-
JPCLCD 1948-7185 10.1021/jz301782f
-
L. Xing, J. Vatamanu, O. Borodin, and D. Bedrov, J. Phys. Chem. Lett. 4, 132 (2013). JPCLCD 1948-7185 10.1021/jz301782f
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 132
-
-
Xing, L.1
Vatamanu, J.2
Borodin, O.3
Bedrov, D.4
-
29
-
-
36849134148
-
-
JAPIAU 0021-8979 10.1063/1.1707360
-
E. Weber, J. Appl. Phys. 10, 663 (1939). JAPIAU 0021-8979 10.1063/1.1707360
-
(1939)
J. Appl. Phys.
, vol.10
, pp. 663
-
-
Weber, E.1
-
30
-
-
84905041719
-
-
Generally, the value of (Equation presented) can vary depending on the amount of voids or neutral solvent in the pore, and the pore width. However, this is not expected in neat ionic liquid.
-
Generally, the value of (Equation presented) can vary depending on the amount of voids or neutral solvent in the pore, and the pore width. However, this is not expected in neat ionic liquid.
-
-
-
-
31
-
-
43449135900
-
Fabrication of nanoporous superstructures through hierarchical self-assembly of nanoparticles
-
DOI 10.1039/b801864b
-
M. Kim, G.H. Jeong, K.Y. Lee, K. Kwon, and S.W. Han, J. Mater. Chem. 18, 2208 (2008). JMACEP 0959-9428 10.1039/b801864b (Pubitemid 351671695)
-
(2008)
Journal of Materials Chemistry
, vol.18
, Issue.19
, pp. 2208-2212
-
-
Kim, M.1
Jeong, G.H.2
Lee, K.Y.3
Kwon, K.4
Han, S.W.5
-
32
-
-
70350660829
-
-
ANCAC3 1936-0851 10.1021/nn900817d
-
C.C. Buttner, A. Langner, M. Geuss, F. Muller, P. Werner, and U. Gosele, ACS Nano 3, 3122 (2009). ANCAC3 1936-0851 10.1021/nn900817d
-
(2009)
ACS Nano
, vol.3
, pp. 3122
-
-
Buttner, C.C.1
Langner, A.2
Geuss, M.3
Muller, F.4
Werner, P.5
Gosele, U.6
-
33
-
-
80051643841
-
-
NALEFD 1530-6984 10.1021/nl201529d
-
F. Bian, Y. Tian, R. Wang, H. Yang, H. Xu, S. Meng, and J. Zhao, Nano Lett. 11, 3251 (2011). NALEFD 1530-6984 10.1021/nl201529d
-
(2011)
Nano Lett.
, vol.11
, pp. 3251
-
-
Bian, F.1
Tian, Y.2
Wang, R.3
Yang, H.4
Xu, H.5
Meng, S.6
Zhao, J.7
-
34
-
-
84857567357
-
-
PPCPFQ 1463-9076 10.1039/c2cp23687g
-
T.F. Esterle, D. Sun, M.R. Roberts, P.N. Bartlett, and J.R. Owen, Phys. Chem. Chem. Phys. 14, 3872 (2012). PPCPFQ 1463-9076 10.1039/c2cp23687g
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 3872
-
-
Esterle, T.F.1
Sun, D.2
Roberts, M.R.3
Bartlett, P.N.4
Owen, J.R.5
-
35
-
-
84890114323
-
-
CPCHFT 1439-4235 10.1002/cphc.201300834
-
C.C. Rochester, A.A. Lee, G. Pruessner, and A.A. Kornyshev, ChemPhysChem 14, 4121 (2013). CPCHFT 1439-4235 10.1002/cphc.201300834
-
(2013)
ChemPhysChem
, vol.14
, pp. 4121
-
-
Rochester, C.C.1
Lee, A.A.2
Pruessner, G.3
Kornyshev, A.A.4
-
36
-
-
84905015404
-
-
For pores with thin walls such as graphene sheets, the situation may be different [37].
-
For pores with thin walls such as graphene sheets, the situation may be different [37].
-
-
-
-
38
-
-
84904963176
-
-
See Supplemental Material at, which includes Refs. [39-43]
-
See Supplemental Material at http://link.aps.org/supplemental/10.1103/ PhysRevLett.113.048701, which includes Refs. [39-43]
-
-
-
-
39
-
-
33947706146
-
-
JAPIAU 0021-8979 10.1063/1.1697690
-
C. Bouwkamp and N. De Bruijn, J. Appl. Phys. 18, 562 (1947). JAPIAU 0021-8979 10.1063/1.1697690
-
(1947)
J. Appl. Phys.
, vol.18
, pp. 562
-
-
Bouwkamp, C.1
De Bruijn, N.2
-
40
-
-
84904963172
-
-
P. Holoborodko, http://www.holoborodko.com/pavel/numerical-methods/ numerical-derivative/smooth-low-noise-differentiators/.
-
-
-
Holoborodko, P.1
-
41
-
-
84905015402
-
-
M.G. Martin, http://towhee.sourceforge.net/.
-
-
-
Martin, M.G.1
-
42
-
-
57149145251
-
-
JCPSA6 0021-9606 10.1063/1.3020439
-
R. Lynden-Bell, J. Chem. Phys. 129, 204503 (2008). JCPSA6 0021-9606 10.1063/1.3020439
-
(2008)
J. Chem. Phys.
, vol.129
, pp. 204503
-
-
Lynden-Bell, R.1
-
43
-
-
84862298283
-
-
JPCBFK 1520-6106 10.1021/jp301359w
-
D. Roy and M. Maroncelli, J. Phys. Chem. B 116, 5951 (2012). JPCBFK 1520-6106 10.1021/jp301359w
-
(2012)
J. Phys. Chem. B
, vol.116
, pp. 5951
-
-
Roy, D.1
Maroncelli, M.2
-
44
-
-
2342594608
-
-
JPCBFK 1520-6106 10.1021/jp036367i
-
Y. Burak and R.R. Netz, J. Phys. Chem. B 108, 4840 (2004). JPCBFK 1520-6106 10.1021/jp036367i
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 4840
-
-
Burak, Y.1
Netz, R.R.2
-
45
-
-
26544461319
-
-
PLRAAN 0556-2791 10.1103/PhysRevA.4.1071
-
M. Blume, V. Emery, and R. Griffiths, Phys. Rev. A 4, 1071 (1971). PLRAAN 0556-2791 10.1103/PhysRevA.4.1071
-
(1971)
Phys. Rev. A
, vol.4
, pp. 1071
-
-
Blume, M.1
Emery, V.2
Griffiths, R.3
-
46
-
-
84904989379
-
-
The classical BEG model has been solved perturbatively in the limit of low applied field [47,48]. However, we obtain the exact solution in this work.
-
The classical BEG model has been solved perturbatively in the limit of low applied field [47,48]. However, we obtain the exact solution in this work.
-
-
-
-
47
-
-
0010657274
-
-
JUPSAU 0031-9015 10.1143/JPSJ.25.322
-
T. Obokata and T. Ooucrn, J. Phys. Soc. Jpn. 25, 322 (1968). JUPSAU 0031-9015 10.1143/JPSJ.25.322
-
(1968)
J. Phys. Soc. Jpn.
, vol.25
, pp. 322
-
-
Obokata, T.1
Ooucrn, T.2
-
50
-
-
44349167850
-
-
IJMPEO 0129-1831 10.1142/S0129183108012303
-
J. Kopp, Int. J. Mod. Phys. C 19, 523 (2008); IJMPEO 0129-1831 10.1142/S0129183108012303
-
(2008)
Int. J. Mod. Phys. C
, vol.19
, pp. 523
-
-
Kopp, J.1
-
51
-
-
47049121187
-
-
IJMPEO 0129-1831 10.1142/S0129183108012649
-
J. Kopp Int. J. Mod. Phys. C 19, 845(E) (2008). IJMPEO 0129-1831 10.1142/S0129183108012649
-
(2008)
Int. J. Mod. Phys. C
, vol.19
-
-
Kopp, J.1
-
52
-
-
84904963173
-
-
(Equation presented) and (Equation presented).
-
(Equation presented) and (Equation presented).
-
-
-
-
53
-
-
84904963174
-
-
For (Equation presented), the capacitance-voltage curves will only shift.
-
For (Equation presented), the capacitance-voltage curves will only shift.
-
-
-
-
55
-
-
84858971620
-
-
EESNBY 1754-5692 10.1039/c2ee03092f
-
S. Kondrat, C. Perez, V. Presser, Y. Gogotsi, and A. Kornyshev, Energy Environ. Sci. 5, 6474 (2012). EESNBY 1754-5692 10.1039/c2ee03092f
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 6474
-
-
Kondrat, S.1
Perez, C.2
Presser, V.3
Gogotsi, Y.4
Kornyshev, A.5
-
56
-
-
84905015400
-
-
In Ref. [54], the porous electrodes were fabricated by chlorination of carbides with wide or narrow pores corresponding to high or low chlorination temperatures. Some experiments [56] indicate that at low chlorination temperatures, there is an abundance of cylindrical and spherical pores. Thus, the presence of cylindrical pores, in combination with the results of Fig. 2(b), may explain the peak to no-peak transition observed in Ref. [54].
-
In Ref. [54], the porous electrodes were fabricated by chlorination of carbides with wide or narrow pores corresponding to high or low chlorination temperatures. Some experiments [56] indicate that at low chlorination temperatures, there is an abundance of cylindrical and spherical pores. Thus, the presence of cylindrical pores, in combination with the results of Fig. 2(b), may explain the peak to no-peak transition observed in Ref. [54].
-
-
-
-
57
-
-
74149089347
-
-
CRBNAH 0008-6223 10.1016/j.carbon.2009.11.033
-
J. Palmer, A. Llobet, S.-H. Yeon, J. Fischer, Y. Shi, Y. Gogotsi, and K. Gubbins, Carbon 48, 1116 (2010). CRBNAH 0008-6223 10.1016/j.carbon.2009.11.033
-
(2010)
Carbon
, vol.48
, pp. 1116
-
-
Palmer, J.1
Llobet, A.2
Yeon, S.-H.3
Fischer, J.4
Shi, Y.5
Gogotsi, Y.6
Gubbins, K.7
-
58
-
-
84904963170
-
-
The microscopic lattice Hamiltonian for strongly ionophobic pores [(Equation presented), see Supplemental Material [38]] exactly fulfills particle-hole symmetry (Equation presented) with shifted energy and voltage ((Equation presented)), in analogy with [58,59].
-
The microscopic lattice Hamiltonian for strongly ionophobic pores [(Equation presented), see Supplemental Material [38]] exactly fulfills particle-hole symmetry (Equation presented) with shifted energy and voltage ((Equation presented)), in analogy with [58,59].
-
-
-
-
59
-
-
0008511327
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.45.11354 354
-
A.L. Efros, Phys. Rev. B 45, 11 354 (1992). PRBMDO 0163-1829 10.1103/PhysRevB.45.11354
-
(1992)
Phys. Rev. B
, vol.45
, pp. 11
-
-
Efros, A.L.1
-
60
-
-
84872903284
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.87.035409
-
B. Skinner and B.I. Shklovskii, Phys. Rev. B 87, 035409 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.035409
-
(2013)
Phys. Rev. B
, vol.87
, pp. 035409
-
-
Skinner, B.1
Shklovskii, B.I.2
-
61
-
-
84905015401
-
-
Our model assumes monodisperse pores which are experimentally realizable [34]. Weak polydispersity will reduce and broaden the peaks in capacitance [54], but the qualitative features shall remain intact.
-
Our model assumes monodisperse pores which are experimentally realizable [34]. Weak polydispersity will reduce and broaden the peaks in capacitance [54], but the qualitative features shall remain intact.
-
-
-
-
62
-
-
84904595629
-
-
NNOTER 0957-4484 10.1088/0957-4484/25/31/315401
-
A.A. Lee, S. Kondrat, G. Oshanin, and A.A. Kornyshev Nanotechnology 25, 315401 (2014). NNOTER 0957-4484 10.1088/0957-4484/25/31/315401
-
(2014)
Nanotechnology
, vol.25
, pp. 315401
-
-
Lee, A.A.1
Kondrat, S.2
Oshanin, G.3
Kornyshev, A.A.4
|