메뉴 건너뛰기




Volumn 38, Issue 15-16, 2014, Pages 3860-3870

Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation

Author keywords

Finite element method; Finite volume method; Fractional calculous; Space fractional Boussinesq equation

Indexed keywords

AQUIFERS; FINITE VOLUME METHOD; HIGHER ORDER STATISTICS; NUMERICAL MODELS;

EID: 84904814096     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2013.10.008     Document Type: Article
Times cited : (74)

References (30)
  • 1
    • 0032740774 scopus 로고    scopus 로고
    • Submarine groundwater discharge and associated chemical input to a coastal sea
    • Li L., Stagnitti F., Barry D.A., Parlange J.Y. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour. Res. 1999, 35:3253-3259.
    • (1999) Water Resour. Res. , vol.35 , pp. 3253-3259
    • Li, L.1    Stagnitti, F.2    Barry, D.A.3    Parlange, J.Y.4
  • 2
    • 0034101105 scopus 로고    scopus 로고
    • Beach water table fluctuations due to spring-neap tides: moving boundary effects
    • Li L., Barry D.A., Stagnitti F., Parlange J.Y., Jeng D.S. Beach water table fluctuations due to spring-neap tides: moving boundary effects. Adv. Water Resour. 2000, 23:817-824.
    • (2000) Adv. Water Resour. , vol.23 , pp. 817-824
    • Li, L.1    Barry, D.A.2    Stagnitti, F.3    Parlange, J.Y.4    Jeng, D.S.5
  • 3
    • 84904787470 scopus 로고    scopus 로고
    • Spring-neap tidal water table fluctuations in a coastal aquifer: beach slope-seepage face effects, ICCE02.
    • L. Li, A. Baird, D. Hom, Spring-neap tidal water table fluctuations in a coastal aquifer: beach slope-seepage face effects, 2002, ICCE02.
    • (2002)
    • Li, L.1    Baird, A.2    Hom, D.3
  • 4
    • 84904785828 scopus 로고    scopus 로고
    • Numerical model of breaking regular wave runup propagation by using 1D Boussinesq equation, University of Tokyo
    • Y. Sukardi, Numerical model of breaking regular wave runup propagation by using 1D Boussinesq equation, University of Tokyo, 2007. http://www.boussinesqequation.blogspot.com.
    • (2007)
    • Sukardi, Y.1
  • 5
    • 0032101998 scopus 로고    scopus 로고
    • Validation of a Boussinesq model of beach groundwater behaviour
    • Baird A.J., Mason T., Horn D.P. Validation of a Boussinesq model of beach groundwater behaviour. Mar. Geol. 1998, 148:55-69.
    • (1998) Mar. Geol. , vol.148 , pp. 55-69
    • Baird, A.J.1    Mason, T.2    Horn, D.P.3
  • 7
    • 62349097511 scopus 로고    scopus 로고
    • Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications
    • Zhang Y., Benson D.A., Reeves D.M. Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 2009, 32:561-581.
    • (2009) Adv. Water Resour. , vol.32 , pp. 561-581
    • Zhang, Y.1    Benson, D.A.2    Reeves, D.M.3
  • 8
    • 34347238581 scopus 로고    scopus 로고
    • Space-fractional advection-dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the Macrodispersion Experiment site data
    • Zhang Y., Benson D.A., Meerschaert M.M., Labolle E.M. Space-fractional advection-dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the Macrodispersion Experiment site data. Water Resour. Res. 2007, 43:W05439.
    • (2007) Water Resour. Res. , vol.43
    • Zhang, Y.1    Benson, D.A.2    Meerschaert, M.M.3    Labolle, E.M.4
  • 9
    • 1542425102 scopus 로고    scopus 로고
    • Numerical solution of space fractional Fokker-Planck equation
    • Liu F., Anh V., Turner I. Numerical solution of space fractional Fokker-Planck equation. J. Comput. Appl. Math. 2004, 166:209-219.
    • (2004) J. Comput. Appl. Math. , vol.166 , pp. 209-219
    • Liu, F.1    Anh, V.2    Turner, I.3
  • 10
    • 34547673244 scopus 로고    scopus 로고
    • Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation
    • Liu F., Zhuang P., Anh V., Turner I., Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 2007, 191:12-21.
    • (2007) Appl. Math. Comput. , vol.191 , pp. 12-21
    • Liu, F.1    Zhuang, P.2    Anh, V.3    Turner, I.4    Burrage, K.5
  • 11
    • 0032307661 scopus 로고    scopus 로고
    • Approximate analytical solution for seepage flow with fractional derivatives in porous media
    • He J. Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 1998, 167:57-68.
    • (1998) Comput. Methods Appl. Mech. Eng. , vol.167 , pp. 57-68
    • He, J.1
  • 12
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion flow equations
    • Meerschaert M.M., Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 2004, 172:65-77.
    • (2004) J. Comput. Appl. Math. , vol.172 , pp. 65-77
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 13
    • 28044468843 scopus 로고    scopus 로고
    • Finite difference approximations for two-sided space-fractional partial differential equations
    • Meerschaert M.M., Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations. J. Appl. Numer. Math. 2006, 56:80-90.
    • (2006) J. Appl. Numer. Math. , vol.56 , pp. 80-90
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 14
    • 33744981446 scopus 로고    scopus 로고
    • Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method
    • Momani S., Odibat Z. Analytical solution of a time-fractional Navier-Stokes equation by Adomian decomposition method. J. Appl. Math. Comput. 2006, 177:488-494.
    • (2006) J. Appl. Math. Comput. , vol.177 , pp. 488-494
    • Momani, S.1    Odibat, Z.2
  • 15
    • 33846798041 scopus 로고    scopus 로고
    • Approximation of the Levy-Feller advection-dispersion process by random walk and finite difference method
    • Liu Q., Liu F., Turner I., Anh V. Approximation of the Levy-Feller advection-dispersion process by random walk and finite difference method. J. Phys. Comput. 2007, 22:57-70.
    • (2007) J. Phys. Comput. , vol.22 , pp. 57-70
    • Liu, Q.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 16
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46(2):1079-1095.
    • (2008) SIAM J. Numer. Anal. , vol.46 , Issue.2 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 17
    • 63649135242 scopus 로고    scopus 로고
    • Numerical simulation for the 3D seepage flow with fractional derivatives in porous media
    • Liu Q., Liu F., Turner I., Anh V. Numerical simulation for the 3D seepage flow with fractional derivatives in porous media. IMA J. Appl. Math. 2009, 74:201-229.
    • (2009) IMA J. Appl. Math. , vol.74 , pp. 201-229
    • Liu, Q.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 18
    • 77958016082 scopus 로고    scopus 로고
    • Garlerkin finite element approximations of symmetric space-fractional partial differential equations
    • Zhang H., Liu F., Anh V. Garlerkin finite element approximations of symmetric space-fractional partial differential equations. Appl. Math. Comput. 2010, 217(6):2534-2545.
    • (2010) Appl. Math. Comput. , vol.217 , Issue.6 , pp. 2534-2545
    • Zhang, H.1    Liu, F.2    Anh, V.3
  • 19
    • 14644446063 scopus 로고    scopus 로고
    • Least squares finite element solution of a fractional order two-point boundary value problem
    • Fix G.J., Roop J.P. Least squares finite element solution of a fractional order two-point boundary value problem. J. Comput. Math. Appl. 2004, 48:1017-1033.
    • (2004) J. Comput. Math. Appl. , vol.48 , pp. 1017-1033
    • Fix, G.J.1    Roop, J.P.2
  • 22
    • 79960990048 scopus 로고    scopus 로고
    • Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
    • Li C.P., Zhao Z.G., Chen Y.Q. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 2011, 62:855-875.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 855-875
    • Li, C.P.1    Zhao, Z.G.2    Chen, Y.Q.3
  • 23
    • 84868191489 scopus 로고    scopus 로고
    • Anumerical approach to the generalized nonlinear fractional Fokker-Planck equation
    • Zhao Zhengang, Li Changpin Anumerical approach to the generalized nonlinear fractional Fokker-Planck equation. Comput. Math. Appl. 2012, 64(10):3075-3089.
    • (2012) Comput. Math. Appl. , vol.64 , Issue.10 , pp. 3075-3089
    • Zhao, Z.1    Li, C.2
  • 24
    • 84868451071 scopus 로고    scopus 로고
    • Fractional difference/finite element approximations for the time-space fractional telegraph equation
    • Zhao Zhengang, Li Changpin Fractional difference/finite element approximations for the time-space fractional telegraph equation. Appl. Math. Comput. 2012, 219(6):2975-2988.
    • (2012) Appl. Math. Comput. , vol.219 , Issue.6 , pp. 2975-2988
    • Zhao, Z.1    Li, C.2
  • 25
    • 84945749147 scopus 로고    scopus 로고
    • Fourier spectral methods for fractional-inspace reaction-diffusion equations
    • (in press).
    • A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-inspace reaction-diffusion equations, J. Comput. Phys., 2013 (in press).
    • (2013) J. Comput. Phys.
    • Bueno-Orovio, A.1    Kay, D.2    Burrage, K.3
  • 26
    • 23944449029 scopus 로고    scopus 로고
    • A mass balance based numerical method for the fractional advection-dispersion equation: theory and application
    • Zhang X., Crawford J.W., Deeks L.K., Shutler M.I., Bengough A.G., Young I.M. A mass balance based numerical method for the fractional advection-dispersion equation: theory and application. Water Resour. Res. 2005, 41:wo7029.
    • (2005) Water Resour. Res. , vol.41
    • Zhang, X.1    Crawford, J.W.2    Deeks, L.K.3    Shutler, M.I.4    Bengough, A.G.5    Young, I.M.6
  • 27
    • 84904805941 scopus 로고    scopus 로고
    • A finite volume method for solving the time-space fractional advection-dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14-17, Hohai University, Nanjing, China (MS11, Paper ID 038).
    • H. Hejazi, T. Moroney, F. Liu, A finite volume method for solving the time-space fractional advection-dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14-17, Hohai University, Nanjing, China (MS11, Paper ID 038).
    • Hejazi, H.1    Moroney, T.2    Liu, F.3
  • 28
    • 76449113714 scopus 로고    scopus 로고
    • Fractional diffusion equations by the Kansa method
    • Chen W., Ye L., Sun H. Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 2010, 59:1614-1620.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1614-1620
    • Chen, W.1    Ye, L.2    Sun, H.3
  • 29
    • 84871003930 scopus 로고    scopus 로고
    • Boundary particle method for Laplace transformed time fractional diffusion equations
    • Fu Z., Chen W., Yang H. Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 2013, 235:52-66.
    • (2013) J. Comput. Phys. , vol.235 , pp. 52-66
    • Fu, Z.1    Chen, W.2    Yang, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.