-
1
-
-
0043157171
-
Learning to filter spam email: A comparison of a naive bayesian and a memorybased approach
-
I. Androutsopoulos, G. Paliouras, V. Karkaletsis, G. Sakkis, C. Spyropoulos, and P. Stamatopoulos. Learning to filter spam email: A comparison of a naive bayesian and a memorybased approach. Workshop on Machine Learning and Textual Information Access, 4, 2000.
-
(2000)
Workshop on Machine Learning and Textual Information Access
, vol.4
-
-
Androutsopoulos, I.1
Paliouras, G.2
Karkaletsis, V.3
Sakkis, G.4
Spyropoulos, C.5
Stamatopoulos, P.6
-
4
-
-
22544468455
-
Boosting trees for anti-spam email filtering
-
X. Carreras and L. Marquez. Boosting trees for anti-spam email filtering. Proceedings of RANLP2001, pages 58-64, 2001.
-
(2001)
Proceedings of RANLP2001
, pp. 58-64
-
-
Carreras, X.1
Marquez, L.2
-
7
-
-
3042815190
-
Bayesian network model for semi-structured document classification
-
L. Denoyer and P. Gallinari. Bayesian network model for semi-structured document classification. Inf. Process. Manage., 40(5):807-827, 2004.
-
(2004)
Inf. Process. Manage.
, vol.40
, Issue.5
, pp. 807-827
-
-
Denoyer, L.1
Gallinari, P.2
-
8
-
-
0032594950
-
Support vector machines for spam categorization
-
H. Drucker, D. Wu, and V. Vapnik. Support vector machines for spam categorization. IEEE Trans. On Neural Networks, 10(5):1048-1054, 1999.
-
(1999)
IEEE Trans. on Neural Networks
, vol.10
, Issue.5
, pp. 1048-1054
-
-
Drucker, H.1
Wu, D.2
Vapnik, V.3
-
9
-
-
33750711226
-
Learning from little: Comparison of classifiers given little training
-
G. Forman and I. Cohen. Learning from little: Comparison of classifiers given little training. In PKDD, pages 161-172, 2004.
-
(2004)
PKDD
, pp. 161-172
-
-
Forman, G.1
Cohen, I.2
-
12
-
-
0002714543
-
Making large-scale support vector machine learning practical
-
A. S. B. Schölkopf, C. Burges, editor. MIT Press, Cambridge, MA
-
T. Joachims. Making large-scale support vector machine learning practical. In A. S. B. Schölkopf, C. Burges, editor, Advances in Kernel Methods: Support Vector Machines. MIT Press, Cambridge, MA, 1999.
-
(1999)
Advances in Kernel Methods: Support Vector Machines
-
-
Joachims, T.1
-
13
-
-
0023312404
-
Estimation of probabilities from sparse data for the language model component of a speech recognizer
-
E. Katz. Estimation of probabilities from sparse data for the language model component of a speech recognizer. IEEE Trans. ASSP, 35(3), 1987.
-
(1987)
IEEE Trans. ASSP
, vol.35
, Issue.3
-
-
Katz, E.1
-
14
-
-
22944464423
-
The enron corpus: A new dataset for email classification research
-
B. Klimt and Y. Yang. The enron corpus: A new dataset for email classification research. In ECML, pages 217-226, 2004.
-
(2004)
ECML
, pp. 217-226
-
-
Klimt, B.1
Yang, Y.2
-
15
-
-
84862276173
-
Using uneven margins SVM and perceptron for information extraction
-
Ann Arbor, Michigan, June. Association for Computational Linguistics
-
Y. Li, K. Bontcheva, and H. Cunningham. Using uneven margins SVM and perceptron for information extraction. In Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005), pages 72-79, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics.
-
(2005)
Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-2005)
, pp. 72-79
-
-
Li, Y.1
Bontcheva, K.2
Cunningham, H.3
-
18
-
-
84898946653
-
Classfication with hybrid generative/discriminative models
-
2004
-
R. Raina, Y. Shen, A. Ng, and A. McCallum. Classfication with hybrid generative/discriminative models. NIPS 16, 2004, 2004.
-
(2004)
NIPS
, vol.16
-
-
Raina, R.1
Shen, Y.2
Ng, A.3
McCallum, A.4
-
19
-
-
0009304541
-
A bayesian approach to filtering junk e-mail
-
M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A bayesian approach to filtering junk e-mail. Learning for Text Categorization - Papers from the AAAI Workshop, pages 55-62, 1998.
-
(1998)
Learning for Text Categorization - Papers from the AAAI Workshop
, pp. 55-62
-
-
Sahami, M.1
Dumais, S.2
Heckerman, D.3
Horvitz, E.4
-
20
-
-
0036643010
-
The use of bigrams to enhance text categorization
-
C.-M. Tan, Y.-F. Wang, and C.-D. Lee. The use of bigrams to enhance text categorization. Inf. Process. Manage., 38(4):529-546, 2002.
-
(2002)
Inf. Process. Manage.
, vol.38
, Issue.4
, pp. 529-546
-
-
Tan, C.-M.1
Wang, Y.-F.2
Lee, C.-D.3
-
21
-
-
0003450542
-
-
Springer-Verlag New York, Inc., New York, NY, USA
-
V. N. Vapnik. The nature of statistical learning theory. Springer-Verlag New York, Inc., New York, NY, USA, 1995.
-
(1995)
The Nature of Statistical Learning Theory
-
-
Vapnik, V.N.1
|