-
1
-
-
27844518415
-
Nanostructures for enzyme stabilization
-
Kim JB, Grate JW, Wang P. Nanostructures for enzyme stabilization. Chem Eng Sci. 2006;61:1017-1026.
-
(2006)
Chem Eng Sci.
, vol.61
, pp. 1017-1026
-
-
Kim, J.B.1
Grate, J.W.2
Wang, P.3
-
2
-
-
77957328836
-
Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes
-
Wang L, Wei L, Chen Y, Jiang R. Specific and reversible immobilization of NADH oxidase on functionalized carbon nanotubes. J Biotechnol. 2010;150:57-63.
-
(2010)
J Biotechnol
, vol.150
, pp. 57-63
-
-
Wang, L.1
Wei, L.2
Chen, Y.3
Jiang, R.4
-
3
-
-
80053439206
-
Enzymes immobilized on carbon nanotubes
-
Feng W, Ji P. Enzymes immobilized on carbon nanotubes. Biotechnol Adv. 2011;29:889-895.
-
(2011)
Biotechnol Adv.
, vol.29
, pp. 889-895
-
-
Feng, W.1
Ji, P.2
-
4
-
-
79956032803
-
High-purity carbon nanotube synthesis method by an arc discharging in magnetic field
-
Anazawa K, Shimotani K, Manabe C, Watanabe H, Shimizu M. High-purity carbon nanotube synthesis method by an arc discharging in magnetic field. Appl Phys Lett. 2002;81:739-741.
-
(2002)
Appl Phys Lett.
, vol.81
, pp. 739-741
-
-
Anazawa, K.1
Shimotani, K.2
Manabe, C.3
Watanabe, H.4
Shimizu, M.5
-
5
-
-
58149212911
-
Catalytic growth of single-walled nanotubes by laser vaporization
-
Guo T, Nikolaev P, Thess A, Colbert D, Smalley R. Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett. 1995;243:49-54.
-
(1995)
Chem Phys Lett.
, vol.243
, pp. 49-54
-
-
Guo, T.1
Nikolaev, P.2
Thess, A.3
Colbert, D.4
Smalley, R.5
-
6
-
-
0036377140
-
A scalable process for production of single-walled carbon nanotubes (SWNTS) by catalytic disproportionation of CO on a solid catalyst
-
Resasco D, Alvarez W, Pompeo F, Balzano L, Herrera J, Kitiyanan B. A scalable process for production of single-walled carbon nanotubes (SWNTS) by catalytic disproportionation of CO on a solid catalyst. J Nanopart Res. 2002;4:131-136.
-
(2002)
J Nanopart Res.
, vol.4
, pp. 131-136
-
-
Resasco, D.1
Alvarez, W.2
Pompeo, F.3
Balzano, L.4
Herrera, J.5
Kitiyanan, B.6
-
7
-
-
0032119929
-
Large-scale purification of single-wall carbon nanotubes: process, product, and characterization
-
Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB, Rodriguez-Macias FJ, Boul PJ, Lu AH, Heymann D, Colbert DT, Lee RS, Fischer JE, Rao AM, Eklund PC, Smalley RE. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl Phys A. 1998;7:29-37.
-
(1998)
Appl Phys A.
, vol.7
, pp. 29-37
-
-
Rinzler, A.G.1
Liu, J.2
Dai, H.3
Nikolaev, P.4
Huffman, C.B.5
Rodriguez-Macias, F.J.6
Boul, P.J.7
Lu, A.H.8
Heymann, D.9
Colbert, D.T.10
Lee, R.S.11
Fischer, J.E.12
Rao, A.M.13
Eklund, P.C.14
Smalley, R.E.15
-
8
-
-
0001727965
-
Electrochemical oxidation of single wall carbon nanotube bundles in sulfuric acid
-
Sumanasekera GU, Allen JL, Fang SL, Loper AL, Rao AM, Eklund PC. Electrochemical oxidation of single wall carbon nanotube bundles in sulfuric acid. J Phys Chem B. 1999;103:4292-4297.
-
(1999)
J Phys Chem B.
, vol.103
, pp. 4292-4297
-
-
Sumanasekera, G.U.1
Allen, J.L.2
Fang, S.L.3
Loper, A.L.4
Rao, A.M.5
Eklund, P.C.6
-
9
-
-
0032557485
-
Fullerene pipes
-
Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE. Fullerene pipes. Science. 1998;280:1253-1256.
-
(1998)
Science.
, vol.280
, pp. 1253-1256
-
-
Liu, J.1
Rinzler, A.G.2
Dai, H.3
Hafner, J.H.4
Bradley, R.K.5
Boul, P.J.6
Lu, A.7
Iverson, T.8
Shelimov, K.9
Huffman, C.B.10
Rodriguez-Macias, F.11
Shon, Y.S.12
Lee, T.R.13
Colbert, D.T.14
Smalley, R.E.15
-
10
-
-
36749045733
-
Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane
-
Kathi J, Rhee KY. Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci. 2008;43:33-37.
-
(2008)
J Mater Sci.
, vol.43
, pp. 33-37
-
-
Kathi, J.1
Rhee, K.Y.2
-
11
-
-
0000308990
-
Attaching proteins to carbon nanotubes via diimide-activated amidation
-
Huang W, Taylor S, Fu K, Lin Y, Zhang D, Hanks TW. Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett. 2002;2:311-314.
-
(2002)
Nano Lett.
, vol.2
, pp. 311-314
-
-
Huang, W.1
Taylor, S.2
Fu, K.3
Lin, Y.4
Zhang, D.5
Hanks, T.W.6
-
12
-
-
33845272077
-
Water-soluble carbon nanotube enzyme conjugates as functional biocatalytic formulations
-
Asuri P, Karajanagi SS, Sellitto E, Kim DY, Kane RS, Dordick JS. Water-soluble carbon nanotube enzyme conjugates as functional biocatalytic formulations. Biotechnol Bioeng. 2006;95:804-811.
-
(2006)
Biotechnol Bioeng.
, vol.95
, pp. 804-811
-
-
Asuri, P.1
Karajanagi, S.S.2
Sellitto, E.3
Kim, D.Y.4
Kane, R.S.5
Dordick, J.S.6
-
13
-
-
0028381937
-
Covalent immobilization of glucose oxidase onto graphitic electrodes
-
Wu H, Olier R, Jaffrezic-Renault N, Clechet P, Nyamsi A, Martelet C. Covalent immobilization of glucose oxidase onto graphitic electrodes. Electrochim Acta. 1994;39:327-331.
-
(1994)
Electrochim Acta
, vol.39
, pp. 327-331
-
-
Wu, H.1
Olier, R.2
Jaffrezic-Renault, N.3
Clechet, P.4
Nyamsi, A.5
Martelet, C.6
-
14
-
-
0026143707
-
Immobilization of acetylcholinesterase on solid surfaces: chemistry and activity studies
-
Bhatia S, Cooney M, Shriverlake L, Fare T, Ligler F. Immobilization of acetylcholinesterase on solid surfaces: chemistry and activity studies. Sens Actuators B. 1991;3:311-317.
-
(1991)
Sens Actuators B
, vol.3
, pp. 311-317
-
-
Bhatia, S.1
Cooney, M.2
Shriverlake, L.3
Fare, T.4
Ligler, F.5
-
15
-
-
77955708538
-
Immobilization of laccase onto 1-aminopyrene functionalized carbon nanotubes and their electrocatalytic activity for oxygen reduction
-
Pang HL, Liu J, Hu D, Zhang XH, Chen JH. Immobilization of laccase onto 1-aminopyrene functionalized carbon nanotubes and their electrocatalytic activity for oxygen reduction. Electrochim Acta. 2010;55:6611-6616.
-
(2010)
Electrochim Acta.
, vol.55
, pp. 6611-6616
-
-
Pang, H.L.1
Liu, J.2
Hu, D.3
Zhang, X.H.4
Chen, J.H.5
-
16
-
-
66749166478
-
Functionalized carbon nanotubes specifically bind to α-chymotrypsin's catalytic site and regulate its enzymatic function
-
Zhang B, Xing Y, Li Z, Zhou H, Mu Q, Yan B. Functionalized carbon nanotubes specifically bind to α-chymotrypsin's catalytic site and regulate its enzymatic function. Nano Lett. 2009;9:2280-2284.
-
(2009)
Nano Lett.
, vol.9
, pp. 2280-2284
-
-
Zhang, B.1
Xing, Y.2
Li, Z.3
Zhou, H.4
Mu, Q.5
Yan, B.6
-
17
-
-
78649335075
-
Amperometric biosensor for aflatoxin B1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes
-
Li SC, Chen JH, Cao H, Yao DS, Liu DL. Amperometric biosensor for aflatoxin B1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes. Food Control. 2011;22:43-49.
-
(2011)
Food Control.
, vol.22
, pp. 43-49
-
-
Li, S.C.1
Chen, J.H.2
Cao, H.3
Yao, D.S.4
Liu, D.L.5
-
18
-
-
71849086388
-
Immobilization of horseradish peroxidase on multiwalled carbon nanotubes and its enzymatic stability
-
Kim BJ, Kang BK, Bahk YY, Yoo KH, Lim KJ. Immobilization of horseradish peroxidase on multiwalled carbon nanotubes and its enzymatic stability. Curr Appl Phys. 2009;9:263-265.
-
(2009)
Curr Appl Phys.
, vol.9
, pp. 263-265
-
-
Kim, B.J.1
Kang, B.K.2
Bahk, Y.Y.3
Yoo, K.H.4
Lim, K.J.5
-
19
-
-
38549083005
-
Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes
-
Shah S, Solanki K, Gupta MN. Enhancement of lipase activity in non-aqueous media upon immobilization on multi-walled carbon nanotubes. Chem Cent J. 2007;1:30.
-
(2007)
Chem Cent J.
, vol.1
, pp. 30
-
-
Shah, S.1
Solanki, K.2
Gupta, M.N.3
-
20
-
-
78650330875
-
Lipase covalently attached to multi-walled carbon nanotubes as an efficient catalyst in organic solvent
-
Ji P, Tan H, Xu X, Feng W. Lipase covalently attached to multi-walled carbon nanotubes as an efficient catalyst in organic solvent. AIChE J. 2010;56:3005-3011.
-
(2010)
AIChE J.
, vol.56
, pp. 3005-3011
-
-
Ji, P.1
Tan, H.2
Xu, X.3
Feng, W.4
-
21
-
-
84858340798
-
Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials
-
Pavlidis IV, Vorhaben T, Tsoufis T, Rudolf P, Bornscheuer UT, Gournis D, Stamatis H. Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour Technol. 2012;115:164-171.
-
(2012)
Bioresour Technol.
, vol.115
, pp. 164-171
-
-
Pavlidis, I.V.1
Vorhaben, T.2
Tsoufis, T.3
Rudolf, P.4
Bornscheuer, U.T.5
Gournis, D.6
Stamatis, H.7
-
22
-
-
34748816278
-
Covalent functionalization of multi-walled carbon nanotubes by lipase
-
Shi Q, Yang D, Su Y, Li J, Jiang Z, Jiang Y, Yuan W. Covalent functionalization of multi-walled carbon nanotubes by lipase. J Nanopart Res. 2007;9:1205-1210.
-
(2007)
J Nanopart Res.
, vol.9
, pp. 1205-1210
-
-
Shi, Q.1
Yang, D.2
Su, Y.3
Li, J.4
Jiang, Z.5
Jiang, Y.6
Yuan, W.7
-
23
-
-
17444384812
-
A microwave-assisted microassay for lipases
-
Jain P, Jain S, Gupta MN. A microwave-assisted microassay for lipases. Anal Bioanal Chem. 2005;381:1480-1482.
-
(2005)
Anal Bioanal Chem.
, vol.381
, pp. 1480-1482
-
-
Jain, P.1
Jain, S.2
Gupta, M.N.3
-
24
-
-
75449100095
-
Synthesis of the 'green apple ester' ethyl valerate in organic solvents by Candida rugosa lipase immobilized in MBGs in organic solvents: effects of immobilization and reaction parameters
-
Raghavendra T, Sayania D, Madamwar D. Synthesis of the 'green apple ester' ethyl valerate in organic solvents by Candida rugosa lipase immobilized in MBGs in organic solvents: effects of immobilization and reaction parameters. J Mol Catal B. 2010;63:31-38.
-
(2010)
J Mol Catal B.
, vol.63
, pp. 31-38
-
-
Raghavendra, T.1
Sayania, D.2
Madamwar, D.3
-
25
-
-
84878116553
-
Robust nanobioconjugates of Candida antarctica lipase B-multiwalled carbon nanotubes: characterization and application for multiple usages in non-aqueous biocatalysis
-
Raghavendra T, Basak A, Manocha LM, Shah AR, Madamwar D. Robust nanobioconjugates of Candida antarctica lipase B-multiwalled carbon nanotubes: characterization and application for multiple usages in non-aqueous biocatalysis. Bioresour Technol. 2013;140:103-110.
-
(2013)
Bioresour Technol.
, vol.140
, pp. 103-110
-
-
Raghavendra, T.1
Basak, A.2
Manocha, L.M.3
Shah, A.R.4
Madamwar, D.5
-
26
-
-
33947512734
-
Functionalized multi-walled carbon nanotubes as affinity ligands
-
Yu L, Li CM, Zhou Q, Gan Y, Bao QL. Functionalized multi-walled carbon nanotubes as affinity ligands. Nanotechnology. 2007;18:115614.
-
(2007)
Nanotechnology.
, vol.18
, pp. 115614
-
-
Yu, L.1
Li, C.M.2
Zhou, Q.3
Gan, Y.4
Bao, Q.L.5
-
27
-
-
21344465467
-
Efficient probe immobilization on poly(dimethylsiloxane) for sensitive detection of proteins
-
Yu L, Li CM, Zhou Q. Efficient probe immobilization on poly(dimethylsiloxane) for sensitive detection of proteins. Front Biosci. 2005;10:2848-2855.
-
(2005)
Front Biosci.
, vol.10
, pp. 2848-2855
-
-
Yu, L.1
Li, C.M.2
Zhou, Q.3
-
29
-
-
77952979384
-
Functionalized multi-wall carbon nanotubes for lipase immobilization
-
Pavlidis IV, Tsoufis T, Enotiadis A, Gournis D, Stamatis H. Functionalized multi-wall carbon nanotubes for lipase immobilization. Adv Eng Mater. 2010;12:B179-B183.
-
(2010)
Adv Eng Mater.
, vol.12
-
-
Pavlidis, I.V.1
Tsoufis, T.2
Enotiadis, A.3
Gournis, D.4
Stamatis, H.5
-
30
-
-
0032825993
-
Non-conventional hydrolase chemistry: amide and carbamate bond formation catalyzed by lipases
-
Gotor V. Non-conventional hydrolase chemistry: amide and carbamate bond formation catalyzed by lipases. Bioorg Med Chem. 1999;7:2189-2197.
-
(1999)
Bioorg Med Chem.
, vol.7
, pp. 2189-2197
-
-
Gotor, V.1
-
31
-
-
0037071912
-
Lipases and (R)-oxynitrilases: useful tools in organic synthesis
-
Gotor V. Lipases and (R)-oxynitrilases: useful tools in organic synthesis. J Biotechnol. 2002;96:35-42.
-
(2002)
J Biotechnol.
, vol.96
, pp. 35-42
-
-
Gotor, V.1
-
32
-
-
26844576835
-
Amide bond formation and peptide coupling
-
Montalbetti CAGN, Falque V. Amide bond formation and peptide coupling. Tetrahedron. 2005;61:10827-10852.
-
(2005)
Tetrahedron
, vol.61
, pp. 10827-10852
-
-
Montalbetti, C.A.G.N.1
Falque, V.2
-
33
-
-
76249122876
-
Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features
-
Liljeblad A, Kallio P, Vainio M, Niemi J, Kanerva LT. Formation and hydrolysis of amide bonds by lipase A from Candida antarctica; exceptional features. Org Biomol Chem. 2010;8:886-895.
-
(2010)
Org Biomol Chem.
, vol.8
, pp. 886-895
-
-
Liljeblad, A.1
Kallio, P.2
Vainio, M.3
Niemi, J.4
Kanerva, L.T.5
-
34
-
-
27644440942
-
Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes
-
Kim UJ, Furtado CA, Liu C, Chen G, Eklund PC. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc. 2005;127:15437-15445.
-
(2005)
J Am Chem Soc.
, vol.127
, pp. 15437-15445
-
-
Kim, U.J.1
Furtado, C.A.2
Liu, C.3
Chen, G.4
Eklund, P.C.5
-
35
-
-
44449150180
-
IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers
-
Teng L-h, Tang T-d. IR study on surface chemical properties of catalytic grown carbon nanotubes and nanofibers. J Zhejiang Univ Sci A. 2008;9:720-726.
-
(2008)
J Zhejiang Univ Sci A.
, vol.9
, pp. 720-726
-
-
Teng, L.-H.1
Tang, T.-D.2
-
37
-
-
0028773288
-
The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica
-
Uppenberg J, Trier Hanse M, Patkar S, Jones TA. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Structure. 1994;2:293-308.
-
(1994)
Structure.
, vol.2
, pp. 293-308
-
-
Uppenberg, J.1
Trier Hanse, M.2
Patkar, S.3
Jones, T.A.4
-
38
-
-
0029148636
-
On the interfacial activation of Candida antarctica lipase-a and lipase-b as compared with Humicola lanuginosa lipase
-
Martinelle M, Holmquist M, Hult K. On the interfacial activation of Candida antarctica lipase-a and lipase-b as compared with Humicola lanuginosa lipase. Biochim Biophys Acta: Lipid Lipid Metab. 1995;1258:272-276.
-
(1995)
Biochim Biophys Acta: Lipid Lipid Metab.
, vol.1258
, pp. 272-276
-
-
Martinelle, M.1
Holmquist, M.2
Hult, K.3
-
39
-
-
0032701223
-
Structure and conformational flexibility of Candida rugosa lipase
-
Cygler M, Schrag JD. Structure and conformational flexibility of Candida rugosa lipase. Biochim Biophys Acta. 1999;2-3:205-214.
-
(1999)
Biochim Biophys Acta
, vol.2-3
, pp. 205-214
-
-
Cygler, M.1
Schrag, J.D.2
-
40
-
-
84856173455
-
Covalently functionalized single-walled carbon nanotubes at reverse micellar interface: a strategy to improve lipase activity
-
Ghosh M, Maiti S, Dutta S, Das D, Das PK. Covalently functionalized single-walled carbon nanotubes at reverse micellar interface: a strategy to improve lipase activity. Langmuir. 2012;28:1715-1724.
-
(2012)
Langmuir.
, vol.28
, pp. 1715-1724
-
-
Ghosh, M.1
Maiti, S.2
Dutta, S.3
Das, D.4
Das, P.K.5
-
41
-
-
65249131130
-
Superior activity of structurally deprived enzyme-carbon nanotube hybrids in cationic reverse micelles
-
Das D, Das PK. Superior activity of structurally deprived enzyme-carbon nanotube hybrids in cationic reverse micelles. Langmuir. 2009;25:4421-4428.
-
(2009)
Langmuir.
, vol.25
, pp. 4421-4428
-
-
Das, D.1
Das, P.K.2
|