-
3
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck equation
-
Liu F., Anh V., Turner I. Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 2004, 16(6):209-219.
-
(2004)
J. Comput. Appl. Math.
, vol.16
, Issue.6
, pp. 209-219
-
-
Liu, F.1
Anh, V.2
Turner, I.3
-
4
-
-
0034205221
-
The fractional Fokker-Planck equation: dispersive transport in an external force field
-
Metzler R., Klafter J. The fractional Fokker-Planck equation: dispersive transport in an external force field. J. Mol. Liq. 2000, 86:219-228.
-
(2000)
J. Mol. Liq.
, vol.86
, pp. 219-228
-
-
Metzler, R.1
Klafter, J.2
-
7
-
-
84862237506
-
Fractional-parabolic systems
-
Kochubei A.N. Fractional-parabolic systems. Potential Anal. 2012, 37(1):1-30.
-
(2012)
Potential Anal.
, vol.37
, Issue.1
, pp. 1-30
-
-
Kochubei, A.N.1
-
8
-
-
0036887936
-
Chaos, fractional kinetics, and anomalous transport
-
Zaslavsky G.M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 2002, 371:461-580.
-
(2002)
Phys. Rep.
, vol.371
, pp. 461-580
-
-
Zaslavsky, G.M.1
-
9
-
-
34347238581
-
Space-fractional advection-dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the MADE-site data
-
Zhang Y., Benson D.A., Meerschaert M.M., Labolle E.M. Space-fractional advection-dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the MADE-site data. Water Resour. Res. 2007, 43:W05439.
-
(2007)
Water Resour. Res.
, vol.43
-
-
Zhang, Y.1
Benson, D.A.2
Meerschaert, M.M.3
Labolle, E.M.4
-
10
-
-
62349097511
-
Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications
-
Zhang Y., Benson D.A., Reeves D.M. Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 2009, 32:561-581.
-
(2009)
Adv. Water Resour.
, vol.32
, pp. 561-581
-
-
Zhang, Y.1
Benson, D.A.2
Reeves, D.M.3
-
11
-
-
41449095257
-
Numerical solutions for fractional reaction-diffusion equations
-
Baeumer B., Kovály M., Meerschaert M.M. Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Appl. 2008, 55:2212-2226.
-
(2008)
Comput. Math. Appl.
, vol.55
, pp. 2212-2226
-
-
Baeumer, B.1
Kovály, M.2
Meerschaert, M.M.3
-
12
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equations
-
Meerschaert M.M., Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 2004, 172:65-77.
-
(2004)
J. Comput. Appl. Math.
, vol.172
, pp. 65-77
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
13
-
-
28044468843
-
Finite difference approximations for two-sided space-fractional partial differential equations
-
Meerschaert M.M., Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 2006, 56(1):80-90.
-
(2006)
Appl. Numer. Math.
, vol.56
, Issue.1
, pp. 80-90
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
14
-
-
34547673244
-
Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation
-
Liu F., Zhuang P., Anh V., Turner I., Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 2007, 191:12-21.
-
(2007)
Appl. Math. Comput.
, vol.191
, pp. 12-21
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
Burrage, K.5
-
15
-
-
57649137996
-
The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation
-
Shen S., Liu F., Anh V., Turner I. The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl. Math. 2008, 73:850-872.
-
(2008)
IMA J. Appl. Math.
, vol.73
, pp. 850-872
-
-
Shen, S.1
Liu, F.2
Anh, V.3
Turner, I.4
-
16
-
-
79951851714
-
Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation
-
Shen S., Liu F., Anh V. Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer. Algorithms 2011, 56:383-403.
-
(2011)
Numer. Algorithms
, vol.56
, pp. 383-403
-
-
Shen, S.1
Liu, F.2
Anh, V.3
-
17
-
-
84904717535
-
-
A second-order accuracy numerical approximation for the Riesz space fractional advection-dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14-17, Hohai University, Nanjing, China.
-
S. Shen, F. Liu, V. Anh, I. Turner, A second-order accuracy numerical approximation for the Riesz space fractional advection-dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14-17, 2012, Hohai University, Nanjing, China.
-
(2012)
-
-
Shen, S.1
Liu, F.2
Anh, V.3
Turner, I.4
-
18
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
-
Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46(2):1079-1095.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, Issue.2
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
19
-
-
67349231192
-
Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
-
Liu F., Yang C., Burrage K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2009, 231(1):160-176.
-
(2009)
J. Comput. Appl. Math.
, vol.231
, Issue.1
, pp. 160-176
-
-
Liu, F.1
Yang, C.2
Burrage, K.3
-
20
-
-
76449113714
-
Fractional diffusion equations by the Kansa method
-
Chen W., Ye L., Sun H. Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 2010, 59:1614-1620.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1614-1620
-
-
Chen, W.1
Ye, L.2
Sun, H.3
-
21
-
-
84871003930
-
Boundary particle method for Laplace transformed time fractional diffusion equations
-
Fu Z., Chen W., Yang H. Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 2013, 235:52-66.
-
(2013)
J. Comput. Phys.
, vol.235
, pp. 52-66
-
-
Fu, Z.1
Chen, W.2
Yang, H.3
-
23
-
-
76449122108
-
A note on the finite element method for the space-fractional advection diffusion equation
-
Zheng Y., Li C., Zhao Z. A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 2010, 59:1718-1726.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1718-1726
-
-
Zheng, Y.1
Li, C.2
Zhao, Z.3
-
24
-
-
79960990048
-
Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
-
Li C.P., Zhao Z.G., Chen Y.Q. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 2011, 62:855-875.
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 855-875
-
-
Li, C.P.1
Zhao, Z.G.2
Chen, Y.Q.3
-
25
-
-
84945749147
-
Fourier spectral methods for fractional-inspace reaction-diffusion equations
-
in press.
-
A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-inspace reaction-diffusion equations, J. Comp. Phys., 2013, in press.
-
(2013)
J. Comp. Phys.
-
-
Bueno-Orovio, A.1
Kay, D.2
Burrage, K.3
-
26
-
-
23944449029
-
A mass balance based numerical method for the fractional advection-dispersion equation: theory and application
-
Zhang X., Crawford J.W., Deeks L.K., Shutler M.I., Bengough A.G., Young I.M. A mass balance based numerical method for the fractional advection-dispersion equation: theory and application. Water Resour. Res. 2005, 41:1-10.
-
(2005)
Water Resour. Res.
, vol.41
, pp. 1-10
-
-
Zhang, X.1
Crawford, J.W.2
Deeks, L.K.3
Shutler, M.I.4
Bengough, A.G.5
Young, I.M.6
-
27
-
-
84904768320
-
A finite volume method for solving the time-space fractional advection-dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14-17, Hohai University, Nanjing, China (MS11, Paper ID 038).
-
H. Hejazi, T. Moroney, F. Liu, A finite volume method for solving the time-space fractional advection-dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14-17, Hohai University, Nanjing, China (MS11, Paper ID 038).
-
-
-
Hejazi, H.1
Moroney, T.2
Liu, F.3
-
28
-
-
34548677557
-
Fractional reproduction-dispersal equations and heavy tail dispersal kernels
-
Baeumer B., Kovály M., Meerschaert M.M. Fractional reproduction-dispersal equations and heavy tail dispersal kernels. Bull. Math. Biol. 2007, 69:2281-2297.
-
(2007)
Bull. Math. Biol.
, vol.69
, pp. 2281-2297
-
-
Baeumer, B.1
Kovály, M.2
Meerschaert, M.M.3
|