메뉴 건너뛰기




Volumn 38, Issue 15-16, 2014, Pages 3871-3878

A new fractional finite volume method for solving the fractional diffusion equation

Author keywords

Finite volume method; Fractional diffusion equation; Nonlinear source term; Space time dependent variable coefficient; Two sided space fractional derivative

Indexed keywords

BOUNDARY CONDITIONS; NONLINEAR EQUATIONS; NUMERICAL METHODS; PARTIAL DIFFERENTIAL EQUATIONS; SOLUTE TRANSPORT;

EID: 84904742021     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2013.10.007     Document Type: Article
Times cited : (206)

References (28)
  • 1
    • 0034032484 scopus 로고    scopus 로고
    • Application of a fractional advection-dispersion equation
    • Benson D.A., Wheatcraft S.W., Meerschaert M.M. Application of a fractional advection-dispersion equation. Water Resour. Res. 2000, 36(6):1403-1412.
    • (2000) Water Resour. Res. , vol.36 , Issue.6 , pp. 1403-1412
    • Benson, D.A.1    Wheatcraft, S.W.2    Meerschaert, M.M.3
  • 2
    • 0034113992 scopus 로고    scopus 로고
    • The fractional-order governing equation of levy motion
    • Benson D.A., Wheatcraft S.W., Meerschaert M.M. The fractional-order governing equation of levy motion. Water Resour. Res. 2000, 36(6):1413-1423.
    • (2000) Water Resour. Res. , vol.36 , Issue.6 , pp. 1413-1423
    • Benson, D.A.1    Wheatcraft, S.W.2    Meerschaert, M.M.3
  • 3
    • 1542425102 scopus 로고    scopus 로고
    • Numerical solution of the space fractional Fokker-Planck equation
    • Liu F., Anh V., Turner I. Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 2004, 16(6):209-219.
    • (2004) J. Comput. Appl. Math. , vol.16 , Issue.6 , pp. 209-219
    • Liu, F.1    Anh, V.2    Turner, I.3
  • 4
    • 0034205221 scopus 로고    scopus 로고
    • The fractional Fokker-Planck equation: dispersive transport in an external force field
    • Metzler R., Klafter J. The fractional Fokker-Planck equation: dispersive transport in an external force field. J. Mol. Liq. 2000, 86:219-228.
    • (2000) J. Mol. Liq. , vol.86 , pp. 219-228
    • Metzler, R.1    Klafter, J.2
  • 7
    • 84862237506 scopus 로고    scopus 로고
    • Fractional-parabolic systems
    • Kochubei A.N. Fractional-parabolic systems. Potential Anal. 2012, 37(1):1-30.
    • (2012) Potential Anal. , vol.37 , Issue.1 , pp. 1-30
    • Kochubei, A.N.1
  • 8
    • 0036887936 scopus 로고    scopus 로고
    • Chaos, fractional kinetics, and anomalous transport
    • Zaslavsky G.M. Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 2002, 371:461-580.
    • (2002) Phys. Rep. , vol.371 , pp. 461-580
    • Zaslavsky, G.M.1
  • 9
    • 34347238581 scopus 로고    scopus 로고
    • Space-fractional advection-dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the MADE-site data
    • Zhang Y., Benson D.A., Meerschaert M.M., Labolle E.M. Space-fractional advection-dispersion equations with variable parameters: diverse formulas, numerical solutions, and application to the MADE-site data. Water Resour. Res. 2007, 43:W05439.
    • (2007) Water Resour. Res. , vol.43
    • Zhang, Y.1    Benson, D.A.2    Meerschaert, M.M.3    Labolle, E.M.4
  • 10
    • 62349097511 scopus 로고    scopus 로고
    • Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications
    • Zhang Y., Benson D.A., Reeves D.M. Time and space nonlocalities underlying fractional-derivative models: distinction and literature review of field applications. Adv. Water Resour. 2009, 32:561-581.
    • (2009) Adv. Water Resour. , vol.32 , pp. 561-581
    • Zhang, Y.1    Benson, D.A.2    Reeves, D.M.3
  • 11
    • 41449095257 scopus 로고    scopus 로고
    • Numerical solutions for fractional reaction-diffusion equations
    • Baeumer B., Kovály M., Meerschaert M.M. Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Appl. 2008, 55:2212-2226.
    • (2008) Comput. Math. Appl. , vol.55 , pp. 2212-2226
    • Baeumer, B.1    Kovály, M.2    Meerschaert, M.M.3
  • 12
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion flow equations
    • Meerschaert M.M., Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 2004, 172:65-77.
    • (2004) J. Comput. Appl. Math. , vol.172 , pp. 65-77
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 13
    • 28044468843 scopus 로고    scopus 로고
    • Finite difference approximations for two-sided space-fractional partial differential equations
    • Meerschaert M.M., Tadjeran C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 2006, 56(1):80-90.
    • (2006) Appl. Numer. Math. , vol.56 , Issue.1 , pp. 80-90
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 14
    • 34547673244 scopus 로고    scopus 로고
    • Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation
    • Liu F., Zhuang P., Anh V., Turner I., Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 2007, 191:12-21.
    • (2007) Appl. Math. Comput. , vol.191 , pp. 12-21
    • Liu, F.1    Zhuang, P.2    Anh, V.3    Turner, I.4    Burrage, K.5
  • 15
    • 57649137996 scopus 로고    scopus 로고
    • The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation
    • Shen S., Liu F., Anh V., Turner I. The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl. Math. 2008, 73:850-872.
    • (2008) IMA J. Appl. Math. , vol.73 , pp. 850-872
    • Shen, S.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 16
    • 79951851714 scopus 로고    scopus 로고
    • Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation
    • Shen S., Liu F., Anh V. Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer. Algorithms 2011, 56:383-403.
    • (2011) Numer. Algorithms , vol.56 , pp. 383-403
    • Shen, S.1    Liu, F.2    Anh, V.3
  • 17
    • 84904717535 scopus 로고    scopus 로고
    • A second-order accuracy numerical approximation for the Riesz space fractional advection-dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14-17, Hohai University, Nanjing, China.
    • S. Shen, F. Liu, V. Anh, I. Turner, A second-order accuracy numerical approximation for the Riesz space fractional advection-dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14-17, 2012, Hohai University, Nanjing, China.
    • (2012)
    • Shen, S.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 18
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Numer. Anal. 2008, 46(2):1079-1095.
    • (2008) SIAM J. Numer. Anal. , vol.46 , Issue.2 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 19
    • 67349231192 scopus 로고    scopus 로고
    • Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
    • Liu F., Yang C., Burrage K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2009, 231(1):160-176.
    • (2009) J. Comput. Appl. Math. , vol.231 , Issue.1 , pp. 160-176
    • Liu, F.1    Yang, C.2    Burrage, K.3
  • 20
    • 76449113714 scopus 로고    scopus 로고
    • Fractional diffusion equations by the Kansa method
    • Chen W., Ye L., Sun H. Fractional diffusion equations by the Kansa method. Comput. Math. Appl. 2010, 59:1614-1620.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1614-1620
    • Chen, W.1    Ye, L.2    Sun, H.3
  • 21
    • 84871003930 scopus 로고    scopus 로고
    • Boundary particle method for Laplace transformed time fractional diffusion equations
    • Fu Z., Chen W., Yang H. Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 2013, 235:52-66.
    • (2013) J. Comput. Phys. , vol.235 , pp. 52-66
    • Fu, Z.1    Chen, W.2    Yang, H.3
  • 23
    • 76449122108 scopus 로고    scopus 로고
    • A note on the finite element method for the space-fractional advection diffusion equation
    • Zheng Y., Li C., Zhao Z. A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 2010, 59:1718-1726.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1718-1726
    • Zheng, Y.1    Li, C.2    Zhao, Z.3
  • 24
    • 79960990048 scopus 로고    scopus 로고
    • Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
    • Li C.P., Zhao Z.G., Chen Y.Q. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 2011, 62:855-875.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 855-875
    • Li, C.P.1    Zhao, Z.G.2    Chen, Y.Q.3
  • 25
    • 84945749147 scopus 로고    scopus 로고
    • Fourier spectral methods for fractional-inspace reaction-diffusion equations
    • in press.
    • A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-inspace reaction-diffusion equations, J. Comp. Phys., 2013, in press.
    • (2013) J. Comp. Phys.
    • Bueno-Orovio, A.1    Kay, D.2    Burrage, K.3
  • 26
    • 23944449029 scopus 로고    scopus 로고
    • A mass balance based numerical method for the fractional advection-dispersion equation: theory and application
    • Zhang X., Crawford J.W., Deeks L.K., Shutler M.I., Bengough A.G., Young I.M. A mass balance based numerical method for the fractional advection-dispersion equation: theory and application. Water Resour. Res. 2005, 41:1-10.
    • (2005) Water Resour. Res. , vol.41 , pp. 1-10
    • Zhang, X.1    Crawford, J.W.2    Deeks, L.K.3    Shutler, M.I.4    Bengough, A.G.5    Young, I.M.6
  • 27
    • 84904768320 scopus 로고    scopus 로고
    • A finite volume method for solving the time-space fractional advection-dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14-17, Hohai University, Nanjing, China (MS11, Paper ID 038).
    • H. Hejazi, T. Moroney, F. Liu, A finite volume method for solving the time-space fractional advection-dispersion equation, in: Proceedings of the Fifth Symposium on Fractional Differentiation and Its Applications, May 14-17, Hohai University, Nanjing, China (MS11, Paper ID 038).
    • Hejazi, H.1    Moroney, T.2    Liu, F.3
  • 28
    • 34548677557 scopus 로고    scopus 로고
    • Fractional reproduction-dispersal equations and heavy tail dispersal kernels
    • Baeumer B., Kovály M., Meerschaert M.M. Fractional reproduction-dispersal equations and heavy tail dispersal kernels. Bull. Math. Biol. 2007, 69:2281-2297.
    • (2007) Bull. Math. Biol. , vol.69 , pp. 2281-2297
    • Baeumer, B.1    Kovály, M.2    Meerschaert, M.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.