-
1
-
-
0002644607
-
Fast similarity search in the presence of noise, scaling, and translation in time-series databases
-
Zurich, Switzerland
-
R. Agrawal, K.-I. Lin, H.S. Sawhney, K. Shim, Fast similarity search in the presence of noise, scaling, and translation in time-series databases, in: Proceedings of the 21th International Conference on Very Large Data Bases, Zurich, Switzerland, 1995, pp. 490-501.
-
(1995)
Proceedings of the 21th International Conference on Very Large Data Bases
, pp. 490-501
-
-
Agrawal, R.1
Lin, K.-I.2
Sawhney, H.S.3
Shim, K.4
-
2
-
-
84877246663
-
Transformation based ensembles for time series classification
-
Anaheim, CA, USA
-
A. Bagnall, L.M. Davis, J. Hills, J. Lines, Transformation based ensembles for time series classification, in: Proceedings of the Twelfth SIAM International Conference on Data Mining, Anaheim, CA, USA, 2012, pp. 307-318.
-
(2012)
Proceedings of the Twelfth SIAM International Conference on Data Mining
, pp. 307-318
-
-
Bagnall, A.1
Davis, L.M.2
Hills, J.3
Lines, J.4
-
3
-
-
84904643346
-
-
(last access 04.14.14)
-
A. Bagnall, E. Keogh. < http://www.cs.ucr.edu/eamonn/time-series-data/ WekaOnTimeSeries.xls > (last access 04.14.14).
-
-
-
Bagnall, A.1
Keogh, E.2
-
4
-
-
0025447750
-
The R*-tree: An efficient and robust access method for points and rectangles
-
Atlantic City, NJ, USA
-
N. Beckmann, H.-P. Kriegel, R. Schneider, B. Seeger, The R*-tree: an efficient and robust access method for points and rectangles, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ, USA, 1990, pp. 322-331.
-
(1990)
Proceedings of the ACM SIGMOD International Conference on Management of Data
, pp. 322-331
-
-
Beckmann, N.1
Kriegel, H.-P.2
Schneider, R.3
Seeger, B.4
-
5
-
-
0000286376
-
Using dynamic time warping to find patterns in time series
-
Seattle, WA, USA
-
D.J. Berndt, J. Clifford, Using dynamic time warping to find patterns in time series, in: Knowledge Discovery in Databases: Papers from the 1994 AAAI Workshop, Seattle, WA, USA, 1994, pp. 359-370.
-
(1994)
Knowledge Discovery in Databases: Papers from the 1994 AAAI Workshop
, pp. 359-370
-
-
Berndt, D.J.1
Clifford, J.2
-
6
-
-
79955702502
-
LIBSVM: A library for support vector machines
-
(last access 04.14.14)
-
C.-C. Chang, and C.-J. Lin LIBSVM: a library for support vector machines ACM Trans. Intell. Syst. Technol. 2 2011 27:1 27:27 < http://www.csie.ntu. edu.tw/cjlin/libsvm > (last access 04.14.14)
-
(2011)
ACM Trans. Intell. Syst. Technol.
, vol.2
, pp. 271-2727
-
-
Chang, C.-C.1
Lin, C.-J.2
-
7
-
-
33746932071
-
A study on SMO-type decomposition methods for support vector machines
-
P.-H. Chen, R.-E. Fan, and C.-J. Lin A study on SMO-type decomposition methods for support vector machines Trans. Neural Networks 17 4 2006 893 908
-
(2006)
Trans. Neural Networks
, vol.17
, Issue.4
, pp. 893-908
-
-
Chen, P.-H.1
Fan, R.-E.2
Lin, C.-J.3
-
8
-
-
29644438050
-
Statistical comparison of classifiers over multiple data sets
-
J. Demšar Statistical comparison of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
9
-
-
84876948280
-
A time series forest for classification and feature extraction
-
H. Deng, G. Runger, E. Tuv, and M. Vladimir A time series forest for classification and feature extraction Inform. Sci. 239 2013 142 153
-
(2013)
Inform. Sci.
, vol.239
, pp. 142-153
-
-
Deng, H.1
Runger, G.2
Tuv, E.3
Vladimir, M.4
-
10
-
-
84867136666
-
Querying and mining of time series data: Experimental comparison of representations and distance measures
-
H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh Querying and mining of time series data: Experimental comparison of representations and distance measures Proc. VLDB Endowment 1 2 2008 1542 1552
-
(2008)
Proc. VLDB Endowment
, vol.1
, Issue.2
, pp. 1542-1552
-
-
Ding, H.1
Trajcevski, G.2
Scheuermann, P.3
Wang, X.4
Keogh, E.5
-
11
-
-
0003922190
-
-
second ed. Wiley & Sons, Inc. New York, NY, USA
-
R.O. Duda, P.E. Hart, and D.G. Stork Pattern Classification second ed. 2001 Wiley & Sons, Inc. New York, NY, USA
-
(2001)
Pattern Classification
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
12
-
-
84871210043
-
Time-series data mining
-
P. Esling, and C. Agon Time-series data mining ACM Comput. Surv. 45 2012 12:1 12:34
-
(2012)
ACM Comput. Surv.
, vol.45
, pp. 121-1234
-
-
Esling, P.1
Agon, C.2
-
13
-
-
77958153264
-
So near and yet so far: New insight into properties of some well-known classifier paradigms
-
D. Fisch, B. Kühbeck, B. Sick, and S.J. Ovaska So near and yet so far: new insight into properties of some well-known classifier paradigms Inform. Sci. 180 18 2010 3381 3401
-
(2010)
Inform. Sci.
, vol.180
, Issue.18
, pp. 3381-3401
-
-
Fisch, D.1
Kühbeck, B.2
Sick, B.3
Ovaska, S.J.4
-
14
-
-
67649404577
-
On-line motif detection in time series with SwiftMotif
-
E. Fuchs, T. Gruber, J. Nitschke, and B. Sick On-line motif detection in time series with SwiftMotif Pattern Recognit. 42 11 2009 3015 3031
-
(2009)
Pattern Recognit.
, vol.42
, Issue.11
, pp. 3015-3031
-
-
Fuchs, E.1
Gruber, T.2
Nitschke, J.3
Sick, B.4
-
15
-
-
78049526879
-
On-line segmentation of time series based on polynomial least-squares approximations
-
E. Fuchs, T. Gruber, J. Nitschke, and B. Sick On-line segmentation of time series based on polynomial least-squares approximations IEEE Trans. Pattern Anal. Mach. Intell. 32 12 2010 2232 2245
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.32
, Issue.12
, pp. 2232-2245
-
-
Fuchs, E.1
Gruber, T.2
Nitschke, J.3
Sick, B.4
-
16
-
-
78649485974
-
Temporal data mining using shape space representations of time series
-
E. Fuchs, T. Gruber, H. Pree, and B. Sick Temporal data mining using shape space representations of time series Neurocomputing 74 1-3 2010 379 393
-
(2010)
Neurocomputing
, vol.74
, Issue.13
, pp. 379-393
-
-
Fuchs, E.1
Gruber, T.2
Pree, H.3
Sick, B.4
-
17
-
-
77954760661
-
Online signature verification with support vector machines based on LCSS kernel functions
-
C. Gruber, T. Gruber, S. Krinninger, and B. Sick Online signature verification with support vector machines based on LCSS kernel functions IEEE Trans. Syst. Man Cybernet. Part B 40 4 2010 1088 1100
-
(2010)
IEEE Trans. Syst. Man Cybernet. Part B
, vol.40
, Issue.4
, pp. 1088-1100
-
-
Gruber, C.1
Gruber, T.2
Krinninger, S.3
Sick, B.4
-
18
-
-
33744956604
-
Online signature verification with new time series kernels for support vector machines
-
D. Zhang, A.K. Jain, Lecture Notes in Computer Science Springer Berlin Heidelberg
-
C. Gruber, T. Gruber, and B. Sick Online signature verification with new time series kernels for support vector machines D. Zhang, A.K. Jain, Advances in Biometrics Lecture Notes in Computer Science vol. 3832 2005 Springer Berlin Heidelberg 500 508
-
(2005)
Advances in Biometrics
, vol.3832
, pp. 500-508
-
-
Gruber, C.1
Gruber, T.2
Sick, B.3
-
19
-
-
35048848086
-
Learning with distance substitution kernels
-
C.E. Rasmussen, H.H. Bülthoff, B. Schölkopf, M.A. Giese, Lecture Notes in Computer Science Springer Berlin Heidelberg
-
B. Haasdonk, and C. Bahlmann Learning with distance substitution kernels C.E. Rasmussen, H.H. Bülthoff, B. Schölkopf, M.A. Giese, Pattern Recognition: Proceedings of the 26th DAGM Symposium for Pattern Recognition Lecture Notes in Computer Science vol. 3175 2004 Springer Berlin Heidelberg 220 227
-
(2004)
Pattern Recognition: Proceedings of the 26th DAGM Symposium for Pattern Recognition
, vol.3175
, pp. 220-227
-
-
Haasdonk, B.1
Bahlmann, C.2
-
22
-
-
0042711018
-
On the need for time series data mining benchmarks: A survey and empirical demonstration
-
E. Keogh, and S. Kasetty On the need for time series data mining benchmarks: a survey and empirical demonstration Data Min. Knowl. Discov. 7 4 2003 349 371
-
(2003)
Data Min. Knowl. Discov.
, vol.7
, Issue.4
, pp. 349-371
-
-
Keogh, E.1
Kasetty, S.2
-
23
-
-
3843050541
-
A Study on Sigmoid Kernels for SVM and the Training of Non-PSD Kernels by SMO-type Methods
-
National Taiwan University, Taipei, Taiwan
-
H.-T. Lin, C.-J. Lin, A Study on Sigmoid Kernels for SVM and the Training of Non-PSD Kernels by SMO-type Methods, Tech. Rep., Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2003.
-
(2003)
Tech. Rep., Department of Computer Science and Information Engineering
-
-
Lin, H.-T.1
Lin, C.-J.2
-
24
-
-
84868502438
-
Revenue forecasting using a least-squares support vector regression model in a fuzzy environment
-
K.-P. Lin, P.-F. Pai, Y.-M. Lu, and P.-T. Chang Revenue forecasting using a least-squares support vector regression model in a fuzzy environment Inform. Sci. 220 2013 196 209
-
(2013)
Inform. Sci.
, vol.220
, pp. 196-209
-
-
Lin, K.-P.1
Pai, P.-F.2
Lu, Y.-M.3
Chang, P.-T.4
-
25
-
-
84904648692
-
Ensembles of elastic distance measures for time series classification
-
Philadelphia, PA, USA
-
J. Lines, A. Bagnall, Ensembles of elastic distance measures for time series classification, in: Proceedings of the 14th SIAM International Conference on Data Mining, Philadelphia, PA, USA, 2014, pp.524-532.
-
(2014)
Proceedings of the 14th SIAM International Conference on Data Mining
, pp. 524-532
-
-
Lines, J.1
Bagnall, A.2
-
26
-
-
84976657294
-
The complexity of some problems on subsequences and supersequences
-
D. Maier The complexity of some problems on subsequences and supersequences J. ACM 25 2 1978 322 336
-
(1978)
J. ACM
, vol.25
, Issue.2
, pp. 322-336
-
-
Maier, D.1
-
27
-
-
62249218289
-
Time warp edit distance with stiffness adjustment for time series matching
-
P.-F. Marteau Time warp edit distance with stiffness adjustment for time series matching IEEE Trans. Pattern Anal. Mach. Intell. 31 2 2009 306 318
-
(2009)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.31
, Issue.2
, pp. 306-318
-
-
Marteau, P.-F.1
-
30
-
-
14344254996
-
Learning with non-positive kernels
-
Banff, Alberta, Canada
-
C.S. Ong, X. Mary, S. Canu, A.J. Smola, Learning with non-positive kernels, in: Proceedings of the 21st International Conference on Machine Learning, Banff, Alberta, Canada, 2004, pp. 639-646.
-
(2004)
Proceedings of the 21st International Conference on Machine Learning
, pp. 639-646
-
-
Ong, C.S.1
Mary, X.2
Canu, S.3
Smola, A.J.4
-
31
-
-
0004322632
-
Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines
-
J.C. Platt, Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines, Tech. Rep. MSR-TR-98-14, Microsoft Research, 1998.
-
(1998)
Tech. Rep. MSR-TR-98-14, Microsoft Research
-
-
Platt, J.C.1
-
32
-
-
84866037385
-
Searching and mining trillions of time series subsequences under dynamic time warping
-
Beijing, China
-
T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Zakaria, E. Keogh, Searching and mining trillions of time series subsequences under dynamic time warping, in: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 2012, pp. 262-270.
-
(2012)
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 262-270
-
-
Rakthanmanon, T.1
Campana, B.2
Mueen, A.3
Batista, G.4
Westover, B.5
Zhu, Q.6
Zakaria, J.7
Keogh, E.8
-
33
-
-
38949156579
-
Linear-time computation of similarity measures for sequential data
-
K. Rieck, and P. Laskov Linear-time computation of similarity measures for sequential data J. Mach. Learn. Res. 9 2008 23 48
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 23-48
-
-
Rieck, K.1
Laskov, P.2
-
34
-
-
0017930815
-
Dynamic programming algorithm optimization for spoken word recognition
-
H. Sakoe, and S. Chiba Dynamic programming algorithm optimization for spoken word recognition IEEE Trans. Acoust. Speech Signal Process. 26 1 1978 43 49
-
(1978)
IEEE Trans. Acoust. Speech Signal Process.
, vol.26
, Issue.1
, pp. 43-49
-
-
Sakoe, H.1
Chiba, S.2
-
35
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
B. Schölkopf, A. Smola, and K.-R. Müller Nonlinear component analysis as a kernel eigenvalue problem Neural Comput. 10 5 1998 1299 1319
-
(1998)
Neural Comput.
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
38
-
-
78751681810
-
Learning with non-metric proximity matrices
-
Singapore
-
G. Wu, E.Y. Chang, Z. Zhang, Learning with non-metric proximity matrices, in: Proceedings of the 13th Annual ACM International Conference on Multimedia, Singapore, 2005, pp. 411-414.
-
(2005)
Proceedings of the 13th Annual ACM International Conference on Multimedia
, pp. 411-414
-
-
Wu, G.1
Chang, E.Y.2
Zhang, Z.3
-
39
-
-
78149485597
-
Time series classification using support vector machine with Gaussian elastic metric kernel
-
Istanbul, Turkey
-
D. Zhang, W. Zuo, D. Zhang, H. Zhang, Time series classification using support vector machine with Gaussian elastic metric kernel, in: International Conference on Pattern Recognition, Istanbul, Turkey, 2010, pp. 29-32.
-
(2010)
International Conference on Pattern Recognition
, pp. 29-32
-
-
Zhang, D.1
Zuo, W.2
Zhang, D.3
Zhang, H.4
-
40
-
-
78649487981
-
A novel pattern extraction method for time series classification
-
X. Zhang, J. Wu, and X. Yang A novel pattern extraction method for time series classification Optim. Eng. 10 2 2008 253 271
-
(2008)
Optim. Eng.
, vol.10
, Issue.2
, pp. 253-271
-
-
Zhang, X.1
Wu, J.2
Yang, X.3
-
41
-
-
84860298589
-
Online independent reduced least squares support vector regression
-
Y.-P. Zhao, J.-G. Sun, Z.-H. Du, Z.-A. Zhang, and Y.-B. Li Online independent reduced least squares support vector regression Inform. Sci. 201 2012 37 52
-
(2012)
Inform. Sci.
, vol.201
, pp. 37-52
-
-
Zhao, Y.-P.1
Sun, J.-G.2
Du, Z.-H.3
Zhang, Z.-A.4
Li, Y.-B.5
|