-
1
-
-
36849013559
-
Detecting time series motifs under uniform scaling
-
Yankov D., Keogh E., Medina J., Chiu B., and Zordan V. Detecting time series motifs under uniform scaling. Proceedings of the 13th International Conference on Knowledge Discovery and Data Mining (KDD), San Jose, CA, USA (2007) 844-853
-
(2007)
Proceedings of the 13th International Conference on Knowledge Discovery and Data Mining (KDD), San Jose, CA, USA
, pp. 844-853
-
-
Yankov, D.1
Keogh, E.2
Medina, J.3
Chiu, B.4
Zordan, V.5
-
2
-
-
52649179212
-
Probabilistic discovery of time series motifs
-
Chiu B., Keogh E., and Lonardi S. Probabilistic discovery of time series motifs. Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining (KDD), Washington, DC, USA (2003) 493-498
-
(2003)
Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining (KDD), Washington, DC, USA
, pp. 493-498
-
-
Chiu, B.1
Keogh, E.2
Lonardi, S.3
-
3
-
-
15544364892
-
Discovery of time series motif from multi-dimensional data based on MDL principle
-
Springer, Berlin
-
Tanaka Y., Iwamoto K., and Uehara K. Discovery of time series motif from multi-dimensional data based on MDL principle. Machine Learning vol. 58 (2005), Springer, Berlin 269-300
-
(2005)
Machine Learning
, vol.58
, pp. 269-300
-
-
Tanaka, Y.1
Iwamoto, K.2
Uehara, K.3
-
4
-
-
77957873516
-
Rule discovery from time series
-
Das G., Lin K.-I., Mannila H., Renganathan G., and Smyth P. Rule discovery from time series. Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD), New York, NY, USA (1998) 16-22
-
(1998)
Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD), New York, NY, USA
, pp. 16-22
-
-
Das, G.1
Lin, K.-I.2
Mannila, H.3
Renganathan, G.4
Smyth, P.5
-
5
-
-
78149351008
-
Clustering of time series subsequences is meaningless: implications for previous and future research
-
Keogh E., Lin J., and Truppel W. Clustering of time series subsequences is meaningless: implications for previous and future research. Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM), Melbourne, FL, USA (2003) 115-122
-
(2003)
Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM), Melbourne, FL, USA
, pp. 115-122
-
-
Keogh, E.1
Lin, J.2
Truppel, W.3
-
6
-
-
72849113577
-
-
A. Mueen, E. Keogh, Q. Zhu, S. Cash, B. Westover, Exact discovery of time series motifs, in: Proceedings of the SIAM International Conference on Data Mining (SDM), Sparks, NV, USA, 2009, pp. 473-484.
-
A. Mueen, E. Keogh, Q. Zhu, S. Cash, B. Westover, Exact discovery of time series motifs, in: Proceedings of the SIAM International Conference on Data Mining (SDM), Sparks, NV, USA, 2009, pp. 473-484.
-
-
-
-
7
-
-
26944474391
-
-
Springer, Berlin, Heidelberg
-
T.-C. Fu, F.-L. Chung, R. Luk, C.-M. Ng, Preventing meaningless stock time series pattern discovery by changing perceptually important point detection, in: Lecture Notes in Computer Science, Springer, vol. 3613, Berlin, Heidelberg, 2005, pp. 1171-1174.
-
(2005)
Preventing meaningless stock time series pattern discovery by changing perceptually important point detection
, vol.3613
, pp. 1171-1174
-
-
Fu, T.-C.1
Chung, F.-L.2
Luk, R.3
Ng, C.-M.4
-
9
-
-
0003659644
-
Computing on data streams
-
Technical Report SRC-TN-1998-011, Digital Systems Research Center, Palo Alto, CA, USA
-
M. Henzinger, P. Raghavan, S. Rajagopalan, Computing on data streams, Technical Report SRC-TN-1998-011, Digital Systems Research Center, Palo Alto, CA, USA, 1998.
-
(1998)
-
-
Henzinger, M.1
Raghavan, P.2
Rajagopalan, S.3
-
10
-
-
84969135798
-
A method for clustering the experiences of a mobile robot that accords with human judgments
-
Oates T., Schmill M.D., and Cohen P.R. A method for clustering the experiences of a mobile robot that accords with human judgments. Proceedings of the 17th National Conference on Artificial Intelligence (AAAI) and the 12th Conference on Innovative Applications of Artificial Intelligence (IAAI), Austin, TX, USA (2000) 846-851
-
(2000)
Proceedings of the 17th National Conference on Artificial Intelligence (AAAI) and the 12th Conference on Innovative Applications of Artificial Intelligence (IAAI), Austin, TX, USA
, pp. 846-851
-
-
Oates, T.1
Schmill, M.D.2
Cohen, P.R.3
-
11
-
-
67649391719
-
Unsupervised activity discovery and characterization from event-streams
-
Hamid R., Maddi S., Johnson A., Bobick A., Essa I., and Isbell C. Unsupervised activity discovery and characterization from event-streams. Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence (UAI), Edinburgh, Great Britain (2005) 251-258
-
(2005)
Proceedings of the 21st Conference on Uncertainty in Artificial Intelligence (UAI), Edinburgh, Great Britain
, pp. 251-258
-
-
Hamid, R.1
Maddi, S.2
Johnson, A.3
Bobick, A.4
Essa, I.5
Isbell, C.6
-
14
-
-
36849042816
-
Selecting maximally informative genes to enable temporal expression profiling analysis
-
Androulakis I., Wu J., Vitoloand J., and Roth C. Selecting maximally informative genes to enable temporal expression profiling analysis. Proceedings of Foundations of Systems Biology in Engineering (FOSBE), Santa Barbara, CA, USA (2005)
-
(2005)
Proceedings of Foundations of Systems Biology in Engineering (FOSBE), Santa Barbara, CA, USA
-
-
Androulakis, I.1
Wu, J.2
Vitoloand, J.3
Roth, C.4
-
15
-
-
8344241451
-
Finding motifs in time series
-
Lin J., Keogh E., Lonardi S., and Patel P. Finding motifs in time series. Proceedings of the 2nd Workshop on Temporal Data Mining, Edmonton, Canada (2002) 53-68
-
(2002)
Proceedings of the 2nd Workshop on Temporal Data Mining, Edmonton, Canada
, pp. 53-68
-
-
Lin, J.1
Keogh, E.2
Lonardi, S.3
Patel, P.4
-
16
-
-
2442567436
-
Mining motifs in massive time series databases
-
Patel P., Keogh E., Lin J., and Lonardi S. Mining motifs in massive time series databases. Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM), Maebashi City, Japan (2002) 370-377
-
(2002)
Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM), Maebashi City, Japan
, pp. 370-377
-
-
Patel, P.1
Keogh, E.2
Lin, J.3
Lonardi, S.4
-
17
-
-
27944453525
-
A study of extraction method of motion patterns observed frequently from time-series posture data
-
Murakami K., Doki S., Okuma S., and Yano Y. A study of extraction method of motion patterns observed frequently from time-series posture data. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC), Waikoloa, HI, USA (2005) 3610-3615
-
(2005)
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC), Waikoloa, HI, USA
, pp. 3610-3615
-
-
Murakami, K.1
Doki, S.2
Okuma, S.3
Yano, Y.4
-
19
-
-
43949136939
-
Discovering characteristic actions from on-body sensor data
-
Minnen D., Starner T., Essa I., and Isbell C. Discovering characteristic actions from on-body sensor data. Proceedings of the 10th IEEE International Symposium on Wearable Computers (ISWC), Montreux, Switzerland (2006) 11-18
-
(2006)
Proceedings of the 10th IEEE International Symposium on Wearable Computers (ISWC), Montreux, Switzerland
, pp. 11-18
-
-
Minnen, D.1
Starner, T.2
Essa, I.3
Isbell, C.4
-
20
-
-
36348977475
-
Discovering multivariate motifs using subsequence density estimation and greedy mixture learning
-
Minnen D., Isbell C.L., Essa I., and Starner T. Discovering multivariate motifs using subsequence density estimation and greedy mixture learning. Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI), Vancouver, Canada (2007) 615-620
-
(2007)
Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI), Vancouver, Canada
, pp. 615-620
-
-
Minnen, D.1
Isbell, C.L.2
Essa, I.3
Starner, T.4
-
21
-
-
33845594450
-
An online algorithm for segmenting time series
-
Keogh E., Chu S., Hart D., and Pazzani M. An online algorithm for segmenting time series. Proceedings of the 2001 IEEE International Conference on Data Mining (ICDM), San Jose, CA, USA (2001) 289-296
-
(2001)
Proceedings of the 2001 IEEE International Conference on Data Mining (ICDM), San Jose, CA, USA
, pp. 289-296
-
-
Keogh, E.1
Chu, S.2
Hart, D.3
Pazzani, M.4
-
22
-
-
85150810448
-
An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback
-
Keogh E., and Pazzani M. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. Proceedings of the 4th International Conference of Knowledge Discovery and Data Mining (KDD), New York, NY, USA (1998) 239-241
-
(1998)
Proceedings of the 4th International Conference of Knowledge Discovery and Data Mining (KDD), New York, NY, USA
, pp. 239-241
-
-
Keogh, E.1
Pazzani, M.2
-
24
-
-
84942742938
-
A simple dimensionality reduction technique for fast similarity search in large time series databases
-
Keogh E.J., and Pazzani M.J. A simple dimensionality reduction technique for fast similarity search in large time series databases. Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Current Issues and New Applications (PAKD), Kyoto, Japan (2000) 122-133
-
(2000)
Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Current Issues and New Applications (PAKD), Kyoto, Japan
, pp. 122-133
-
-
Keogh, E.J.1
Pazzani, M.J.2
-
25
-
-
2442554914
-
Online amnesic approximation of streaming time series
-
Palpanas T., Vlachos M., Keogh E., Gunopulos D., and Truppel W. Online amnesic approximation of streaming time series. Proceedings of the 20th International Conference on Data Engineering (ICDE), Boston, MA, USA (2004) 339-349
-
(2004)
Proceedings of the 20th International Conference on Data Engineering (ICDE), Boston, MA, USA
, pp. 339-349
-
-
Palpanas, T.1
Vlachos, M.2
Keogh, E.3
Gunopulos, D.4
Truppel, W.5
-
26
-
-
0034832364
-
Locally adaptive dimensionality reduction for indexing large time series databases
-
Keogh E., Chakrabarti K., Pazzani M., and Mehrotra S. Locally adaptive dimensionality reduction for indexing large time series databases. SIGMOD Record 30 2 (2001) 151-162
-
(2001)
SIGMOD Record
, vol.30
, Issue.2
, pp. 151-162
-
-
Keogh, E.1
Chakrabarti, K.2
Pazzani, M.3
Mehrotra, S.4
-
27
-
-
0042711018
-
On the need for time series data mining benchmarks: a survey and empirical demonstration
-
Keogh E., and Kasetty S. On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Mining and Knowledge Discovery 7 4 (2003) 349-371
-
(2003)
Data Mining and Knowledge Discovery
, vol.7
, Issue.4
, pp. 349-371
-
-
Keogh, E.1
Kasetty, S.2
-
29
-
-
36849024664
-
Frequent motion pattern extraction for motion recognition in real-time human proxy
-
Arita D., Yoshimatsu H., and Taniguchi R. Frequent motion pattern extraction for motion recognition in real-time human proxy. Proceedings of the International Workshop on Conversational Informatics (JSAI), Kitakyushu, Japan (2005) 25-30
-
(2005)
Proceedings of the International Workshop on Conversational Informatics (JSAI), Kitakyushu, Japan
, pp. 25-30
-
-
Arita, D.1
Yoshimatsu, H.2
Taniguchi, R.3
-
30
-
-
67649388854
-
Motion motif extraction from high-dimensional motion information
-
Araki Y., Arita D., and Taniguchi R.-I. Motion motif extraction from high-dimensional motion information. Proceedings of the 12th Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV), Tokushima, Japan (2006) 92-97
-
(2006)
Proceedings of the 12th Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV), Tokushima, Japan
, pp. 92-97
-
-
Araki, Y.1
Arita, D.2
Taniguchi, R.-I.3
-
33
-
-
0004168818
-
-
Johns Hopkins University Press, Baltimore, London
-
Golub G.H., and van Loan C.F. Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences. third ed. (1996), Johns Hopkins University Press, Baltimore, London
-
(1996)
Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences. third ed.
-
-
Golub, G.H.1
van Loan, C.F.2
-
35
-
-
67649391718
-
-
E. Fuchs, T. Gruber, J. Nitschke, B. Sick, On-line segmentation of time series based on polynomial least-squares approximations, IEEE Transactions on Pattern Analysis and Machine Intelligence, under review
-
E. Fuchs, T. Gruber, J. Nitschke, B. Sick, On-line segmentation of time series based on polynomial least-squares approximations, IEEE Transactions on Pattern Analysis and Machine Intelligence, under review.
-
-
-
-
37
-
-
0030644395
-
Fast least-squares polynomial approximation in moving time windows
-
Fuchs E., and Donner K. Fast least-squares polynomial approximation in moving time windows. Proceedings of the 1997 International Conference on Acoustics, Speech and Signal Processing (ICASSP), Munich, Germany 3 (1997) 1965-1968
-
(1997)
Proceedings of the 1997 International Conference on Acoustics, Speech and Signal Processing (ICASSP), Munich, Germany
, vol.3
, pp. 1965-1968
-
-
Fuchs, E.1
Donner, K.2
-
38
-
-
67649404063
-
On discrete polynomial least-squares approximation in moving time windows
-
Gautschi W., Golub G., and Opfer G. (Eds)
-
Fuchs E. On discrete polynomial least-squares approximation in moving time windows. In: Gautschi W., Golub G., and Opfer G. (Eds). Applications and Computation of Orthogonal Polynomials, International Series of Numerical Mathematics, vol. 131, Birkhäuser, Basel, Switzerland (Proceedings of the Conference at the Mathematical Research Institute Oberwolfach, Germany, March 22-28, 1998) (1999) 93-107
-
(1999)
Applications and Computation of Orthogonal Polynomials, International Series of Numerical Mathematics, vol. 131, Birkhäuser, Basel, Switzerland (Proceedings of the Conference at the Mathematical Research Institute Oberwolfach, Germany, March 22-28, 1998)
, pp. 93-107
-
-
Fuchs, E.1
-
40
-
-
0003602164
-
-
Kluwer Academic Publishers, Boston
-
Liu H., and Motoda H. Feature Extraction, Construction, and Selection: A Data Mining Perspective (1998), Kluwer Academic Publishers, Boston
-
(1998)
Feature Extraction, Construction, and Selection: A Data Mining Perspective
-
-
Liu, H.1
Motoda, H.2
-
42
-
-
84941155240
-
Well separated clusters and optimal fuzzy partitions
-
Dunn J.C. Well separated clusters and optimal fuzzy partitions. Journal of Cybernetics 4 (1974) 95-104
-
(1974)
Journal of Cybernetics
, vol.4
, pp. 95-104
-
-
Dunn, J.C.1
-
44
-
-
67649401190
-
-
L. Prechelt, Proben1-a set of neural network benchmark problems and benchmarking rules, Technical Report 21/94, Universität Karlsruhe, Fakultät für Informatik, Karlsruhe, Germany, 1994.
-
L. Prechelt, Proben1-a set of neural network benchmark problems and benchmarking rules, Technical Report 21/94, Universität Karlsruhe, Fakultät für Informatik, Karlsruhe, Germany, 1994.
-
-
-
-
47
-
-
67649411012
-
-
The UCR time series classification/clustering home. URL
-
E. Keogh, X. Xi, L. Wei, C.A. Ratanamahatana, The UCR time series classification/clustering homepage, 2006. URL: 〈www.cs.ucr.edu/eamonn/time_series_data/〉.
-
(2006)
-
-
Keogh, E.1
Xi, X.2
Wei, L.3
Ratanamahatana, C.A.4
-
48
-
-
84867136666
-
Querying and mining of time series data: experimental comparison of representations and distance measures
-
Ding H., Trajcevski G., Scheuermann P., Wang X., and Keogh E. Querying and mining of time series data: experimental comparison of representations and distance measures. Proceedings of the 34th International Conference on Very Large Data Bases (VLDB08), Auckland, New Zealand (2008) 1542-1552
-
(2008)
Proceedings of the 34th International Conference on Very Large Data Bases (VLDB08), Auckland, New Zealand
, pp. 1542-1552
-
-
Ding, H.1
Trajcevski, G.2
Scheuermann, P.3
Wang, X.4
Keogh, E.5
-
51
-
-
0002061016
-
A rigorous ODE solver and Smale's 14th problem
-
Tucker W. A rigorous ODE solver and Smale's 14th problem. Foundations of Computational Mathematics 2 1 (2002) 53-117
-
(2002)
Foundations of Computational Mathematics
, vol.2
, Issue.1
, pp. 53-117
-
-
Tucker, W.1
-
52
-
-
67649401189
-
-
D. Fisch, T. Gruber, B. Sick, SwiftRule: mining comprehensible classification rules for time series analysis, IEEE Transactions on Knowledge and Data Engineering, under review
-
D. Fisch, T. Gruber, B. Sick, SwiftRule: mining comprehensible classification rules for time series analysis, IEEE Transactions on Knowledge and Data Engineering, under review.
-
-
-
|