메뉴 건너뛰기




Volumn 65, Issue 8, 2014, Pages 1232-1244

An artificial neural network meta-model for constrained simulation optimization

Author keywords

ANN; expensive simulation optimization; meta model based algorithm; SNOPT solver

Indexed keywords

CONSTRAINED OPTIMIZATION; ITERATIVE METHODS; NEURAL NETWORKS; NONLINEAR PROGRAMMING; STATISTICS; STOCHASTIC SYSTEMS;

EID: 84904615454     PISSN: 01605682     EISSN: 14769360     Source Type: Journal    
DOI: 10.1057/jors.2013.73     Document Type: Article
Times cited : (20)

References (27)
  • 2
    • 33846658831 scopus 로고    scopus 로고
    • Simulation-based optimization for repairable systems using particle swarm algorithm
    • Orlando, FL
    • Alkhamis TM and Ahmed MA (2005). Simulation-based optimization for repairable systems using particle swarm algorithm. In: Proceedings of the 2005 Winter Simulation Conference, Orlando, FL, pp 857-861.
    • (2005) Proceedings of the 2005 Winter Simulation Conference , pp. 857-861
    • Alkhamis, T.M.1    Ahmed, M.A.2
  • 5
    • 77950468650 scopus 로고    scopus 로고
    • Metamodel-based simulation optimization
    • SG Henderson and BL Nelson (eds. Elsevier: North Holland
    • Barton RR and Meckesheimer M (2006). Metamodel-based simulation optimization. In: SG Henderson and BL Nelson (eds). Handbooks in Operations Research and Management Science. Elsevier: North Holland, pp 535-574.
    • (2006) Handbooks in Operations Research and Management Science , pp. 535-574
    • Barton, R.R.1    Meckesheimer, M.2
  • 6
    • 0032290624 scopus 로고    scopus 로고
    • Optimization of (s, S) inventory systems with random lead times and a service level constraint
    • Bashyam S and Fu MC (1998). Optimization of (s, S) inventory systems with random lead times and a service level constraint. Management Science 44(12-Part-2): 243-256.
    • (1998) Management Science , vol.44 , Issue.12 PART2 , pp. 243-256
    • Bashyam, S.1    Fu, M.C.2
  • 9
    • 79958153366 scopus 로고    scopus 로고
    • A comparison of genetic programming and artificial neural networks in metamodeling of discrete-event simulation models
    • Can B and Heavey C (2012). A comparison of genetic programming and artificial neural networks in metamodeling of discrete-event simulation models. Computers & Operations Research 39(2): 424-436.
    • (2012) Computers & Operations Research , vol.39 , Issue.2 , pp. 424-436
    • Can, B.1    Heavey, C.2
  • 10
    • 49749126726 scopus 로고    scopus 로고
    • Stochastic trust region gradientfree method (STRONG): A new response-surface-based algorithm in simulation optimization
    • Washington DC
    • Chang KH, Hong LJ andWan H (2007). Stochastic trust region gradientfree method (STRONG): A new response-surface-based algorithm in simulation optimization. In: Proceedings of the 2007 Winter Simulation Conference, Washington DC, pp 346-354.
    • (2007) Proceedings of the 2007 Winter Simulation Conference , pp. 346-354
    • Chang, K.H.1    Hong, L.J.2    Wan, H.3
  • 11
    • 68649087846 scopus 로고    scopus 로고
    • Optimization of manufacturing systems using a neural network metamodel with a new training approach
    • Dengiz B, Alabas-Uslu C and Dengiz O (2008). Optimization of manufacturing systems using a neural network metamodel with a new training approach. Journal of the Operational Research Society 60(9): 1191-1197.
    • (2008) Journal of the Operational Research Society , vol.60 , Issue.9 , pp. 1191-1197
    • Dengiz, B.1    Alabas-Uslu, C.2    Dengiz, O.3
  • 13
    • 77950463930 scopus 로고    scopus 로고
    • Gradient estimation
    • In SG Henderson and BL Nelson (eds). Elsevier: North Holland
    • Fu MC (2006). Gradient estimation. In SG Henderson and BL Nelson (eds). Handbooks in Operations Research and Management Science. Elsevier: North Holland, pp 575-616.
    • (2006) Handbooks in Operations Research and Management Science , pp. 575-616
    • Fu, M.C.1
  • 14
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks 4(2): 251-257.
    • (1991) Neural Networks , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 15
    • 0031284208 scopus 로고    scopus 로고
    • An example of simulation optimisation using a neural network metamodel: Finding the optimum number of kanbans in a manufacturing system
    • Hurrion RD (1997). An example of simulation optimisation using a neural network metamodel: Finding the optimum number of kanbans in a manufacturing system. Journal of the Operational Research Society 48(11): 1105-1112.
    • (1997) Journal of the Operational Research Society , vol.48 , Issue.11 , pp. 1105-1112
    • Hurrion, R.D.1
  • 16
    • 1942437471 scopus 로고    scopus 로고
    • A sequential-design metamodeling strategy for simulation optimization
    • Keys AC and Rees LP (2004). A sequential-design metamodeling strategy for simulation optimization. Computers & Operations Research 31(11): 1911-1932.
    • (2004) Computers & Operations Research , vol.31 , Issue.11 , pp. 1911-1932
    • Keys, A.C.1    Rees, L.P.2
  • 18
    • 38149045726 scopus 로고    scopus 로고
    • Response surface methodology for constrained simulation optimization: An overview
    • Kleijnen JPC (2008). Response surface methodology for constrained simulation optimization: An overview. Simulation Modelling Practice and Theory 16(1): 50-64.
    • (2008) Simulation Modelling Practice and Theory , vol.16 , Issue.1 , pp. 50-64
    • Kleijnen, J.P.C.1
  • 19
    • 33947715737 scopus 로고    scopus 로고
    • Optimization of simulated systems: OptQuest and alternatives
    • Kleijnen JPC and Wan J (2007). Optimization of simulated systems: OptQuest and alternatives. Simulation Modelling Practice and Theory 15(3): 354-362.
    • (2007) Simulation Modelling Practice and Theory , vol.15 , Issue.3 , pp. 354-362
    • Kleijnen, J.P.C.1    Wan, J.2
  • 21
    • 0031236099 scopus 로고    scopus 로고
    • Objective functions for training new hidden units in constructive neural networks
    • Kwok TY and Yeung DY (1997). Objective functions for training new hidden units in constructive neural networks. Neural Networks, IEEE Transactions on 8(5): 1131-1148.
    • (1997) Neural Networks IEEE Transactions on , vol.8 , Issue.5 , pp. 1131-1148
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 23
    • 78049279737 scopus 로고    scopus 로고
    • A systematic comparison of metamodeling techniques for simulation optimization in decision support systems
    • Li YF, Ng SH, Xie M and Goh TN (2010). A systematic comparison of metamodeling techniques for simulation optimization in decision support systems. Applied Soft Computing 10(4): 1257-1273.
    • (2010) Applied Soft Computing , vol.10 , Issue.4 , pp. 1257-1273
    • Li, Y.F.1    Ng, S.H.2    Xie, M.3    Goh, T.N.4
  • 24
    • 33846829958 scopus 로고    scopus 로고
    • Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method
    • Shen C, Wang L and Li Q (2007). Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method. Journal of Materials Processing Technology 183(2): 412-418.
    • (2007) Journal of Materials Processing Technology , vol.183 , Issue.2 , pp. 412-418
    • Shen, C.1    Wang, L.2    Li, Q.3
  • 26
    • 27144503667 scopus 로고    scopus 로고
    • A hybrid genetic algorithm-neural network strategy for simulation optimization
    • Wang L (2005). A hybrid genetic algorithm-neural network strategy for simulation optimization. Applied Mathematics and Computation 170(2): 1329-1343.
    • (2005) Applied Mathematics and Computation , vol.170 , Issue.2 , pp. 1329-1343
    • Wang, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.