-
1
-
-
84861420312
-
Introduction to probabilistic topic models
-
D. M. Blei. Introduction to probabilistic topic models. Communications of the ACM, 2011.
-
(2011)
Communications of the ACM
-
-
Blei, D.M.1
-
3
-
-
0141607824
-
Latent dirichlet allocation
-
D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent Dirichlet allocation. Journal of Machine Learning Research, 3(4-5):993-1022, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, Issue.4-5
, pp. 993-1022
-
-
Blei, D.M.1
Ng, A.Y.2
Jordan, M.I.3
-
4
-
-
77953358690
-
Knowledge discovery through directed probabilistic topic models: A survey
-
A. Daud, J. Li, L. Zhou, and F. Muhammad. Knowledge discovery through directed probabilistic topic models: a survey. Frontiers of Computer Science in China, 4(2):280-301, 2010.
-
(2010)
Frontiers of Computer Science in China
, vol.4
, Issue.2
, pp. 280-301
-
-
Daud, A.1
Li, J.2
Zhou, L.3
Muhammad, F.4
-
6
-
-
76849111905
-
Probabilistic topic models
-
In T. Landauer, D. Mcnamara, S. Dennis, and W. Kintsch, editors. Laurence Erlbaum
-
T. Grifiths and M. Steyvers. Probabilistic topic models. In T. Landauer, D. Mcnamara, S. Dennis, and W. Kintsch, editors, Latent Semantic Analysis: A Road to Meaning. Laurence Erlbaum, 2006.
-
(2006)
Latent Semantic Analysis: A Road to Meaning
-
-
Grifiths, T.1
Steyvers, M.2
-
7
-
-
84880716210
-
Mapping the public agenda with topic modeling: The case of the russian livejournal
-
O. Koltsova and S. Koltcov. Mapping the public agenda with topic modeling: The case of the Russian livejournal. Policy & Internet, 5(2):207-227, 2013.
-
(2013)
Policy & Internet
, vol.5
, Issue.2
, pp. 207-227
-
-
Koltsova, O.1
Koltcov, S.2
-
8
-
-
0002719797
-
The hungarian method for the assignment problem
-
H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2:83-97, 1955.
-
(1955)
Naval Research Logistics Quarterly
, vol.2
, pp. 83-97
-
-
Kuhn, H.W.1
-
11
-
-
84875474429
-
Robust plsa performs better than lda
-
In P. Serdyukov, P. Braslavski, S. O. Kuznetsov, J. Kamps, S. M. Rüger, E. Agichtein, I. Segalovich, and E. Yilmaz, editors, Moscow, Russia, March 24-27, 2013. Proceedings, volume 7814 of Lecture Notes in Computer Science. Springer
-
A. Potapenko and K. Vorontsov. Robust PLSA performs better than LDA. In P. Serdyukov, P. Braslavski, S. O. Kuznetsov, J. Kamps, S. M. Rüger, E. Agichtein, I. Segalovich, and E. Yilmaz, editors, Advances in Information Retrieval -35th European Conference on IR Research, ECIR 2013, Moscow, Russia, March 24-27, 2013. Proceedings, volume 7814 of Lecture Notes in Computer Science, pages 784-787. Springer, 2013.
-
(2013)
Advances in Information Retrieval -35th European Conference on IR Research, ECIR 2013
, pp. 784-787
-
-
Potapenko, A.1
Vorontsov, K.2
-
17
-
-
71149089356
-
Evaluation methods for topic models
-
New York, NY, USA, ACM
-
H. M. Wallach, I. Murray, R. Salakhutdinov, and D. Mimno. Evaluation methods for topic models. In Proceedings of the 26th International Conference on Machine Learning, pages 1105-1112, New York, NY, USA, 2009. ACM.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning
, pp. 1105-1112
-
-
Wallach, H.M.1
Murray, I.2
Salakhutdinov, R.3
Mimno, D.4
-
18
-
-
33749565782
-
Topics over time: A non-markov continuous-Time model of topical trends
-
New York, NY, USA. ACM
-
X. Wang and A. McCallum. Topics over time: a non-Markov continuous-Time model of topical trends. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 424-433, New York, NY, USA, 2006. ACM.
-
(2006)
Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 424-433
-
-
Wang, X.1
McCallum, A.2
|