메뉴 건너뛰기




Volumn 4, Issue 2, 2010, Pages 280-301

Knowledge discovery through directed probabilistic topic models: A survey

Author keywords

Directed Probabilistic Topic Models (DPTMs); Knowledge discovery; Soft clustering; Text corpora; Unsupervised learning

Indexed keywords

ACTIVE AREA; BASIC CONCEPTS; CHRONOLOGICAL ORDER; DOCUMENT CLASSIFICATION; EXPERT FINDING; EXPLICIT REPRESENTATION; FUTURE DIRECTIONS; GRAPHICAL MODEL; HIDDEN STRUCTURES; KNOWLEDGE DISCOVERY; KNOWLEDGE DISCOVERY IN TEXTS; LATENT VARIABLE; PERFORMANCE EVALUATION; PROBABILISTIC MODELING; SEMANTIC LEVELS; SOFT CLUSTERING; TEMPORAL TRENDS; TEXT CORPORA; TOPIC MODEL;

EID: 77953358690     PISSN: 16737350     EISSN: 16737466     Source Type: Journal    
DOI: 10.1007/s11704-009-0062-y     Document Type: Review
Times cited : (123)

References (67)
  • 1
    • 0033725422 scopus 로고    scopus 로고
    • Popescul A, Flake G W, Lawrence S, Ungar L H, Giles C L. Clustering and identifying temporal trends in document databases. IEEE ADL, 2000, 173-182.
  • 2
    • 0034592784 scopus 로고    scopus 로고
    • McCallum A, Nigam K, Ungar L H. Efficient clustering of high-dimensional data sets with application to reference matching. In: Proceedings of the 6th ACM SIGKDD, 2000, 169-178.
  • 3
    • 77953364149 scopus 로고    scopus 로고
    • Hofmann T. Probabilistic latent semantic analysis. In: Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI), Stockholm, Sweden, July 30-August 1, 1999.
  • 4
    • 77953356212 scopus 로고    scopus 로고
    • Steyvers M, Griffiths T. Probabilistic topic models. In: Landauer T, Mcnamara D, Dennis S, Kintsch W (Eds), Latent Semantic Analysis: A Road to Meaning. Laurence Erlbaum, 2007.
  • 5
    • 77953359914 scopus 로고    scopus 로고
    • Heinrich G. Parameter Estimation for Text Analysis. Technical report, Version 2, February 2008.
  • 9
    • 77953356389 scopus 로고    scopus 로고
    • Rosen-Zvi M, Griffiths T, Steyvers M, Smyth P. The author-topic model for authors and documents. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence (UAI), Banff, Canada, July 7-11, 2004.
  • 14
    • 12244288622 scopus 로고    scopus 로고
    • Steyvers M, Smyth P, Rosen-Zvi M, Griffiths T. Probabilistic author-topic models for information discovery. In: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Seattle, Washington, August 22-25, 2004.
  • 15
    • 33846003167 scopus 로고    scopus 로고
    • Wang X, Li W, McCallum A. A continuous-time model of topic cooccurrence trends. In: AAAI Workshop on Event Detection. Boston, Massachusetts, USA, July 16-20, 2006.
  • 16
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • Nigam K, McCallum A K, Thrun S, Mitchell T. Text classification from labeled and unlabeled documents using EM. Journal of Machine Learning, 2000, 39(2-3): 103-134.
    • (2000) Journal of Machine Learning , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 17
    • 77953360036 scopus 로고    scopus 로고
    • Griffiths T L, Steyvers M. A probabilistic approach to semantic representation. In: Proceedings of the 24th Conference of the Cognitive Science Society. USA, 2002.
  • 19
    • 77953363962 scopus 로고    scopus 로고
    • Wray L, Buntine, Jakulin A. Applying discrete PCA in data analysis. In: Proceedings of 20th Conference on Uncertainty in Artificial Intelligence (UAI), Banff, Canada, July 7-11, 2004, 59-66.
  • 20
    • 77953357544 scopus 로고    scopus 로고
    • Minka T, Lafferty J. Expectation-propagation for the generative aspect model. In: Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence (UAI), Alberta, Canada, August 1-4, 2002, 352-359.
  • 22
    • 17444392177 scopus 로고    scopus 로고
    • The missing link- a probabilistic model of document content and hypertext connectivity
    • Cambridge, MA: MIT Press
    • Cohn D, Hofmann T. The missing link- a probabilistic model of document content and hypertext connectivity. In: Advances in Neural Information Processing Systems (NIPS) 13. Cambridge, MA, MIT Press, 2001.
    • (2001) Advances in Neural Information Processing Systems (NIPS) 13
    • Cohn, D.1    Hofmann, T.2
  • 23
    • 0034794874 scopus 로고    scopus 로고
    • Blei D M, Moreno P J. Topic segmentation with an aspect hidden Markov model. In: Proceedings of 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New Orleans. LA USA, September 9-13, 2001, 343-348.
  • 25
    • 79951763212 scopus 로고    scopus 로고
    • Nallapati R, Cohen W. Link-plsa-lda: A new unsupervised model for topics and influence of blogs. In: Proceedings of International Conference for Weblogs and Social Media, Seattle, Washington, USA, March 30-April 2, 2008.
  • 26
    • 77953358682 scopus 로고    scopus 로고
    • McCallum A, Corrada-Emmanuel A, Wang X. The Authorrecipient-topic Model for Topic and Role Discovery in Social Networks: Experiments with Enron and Academic Email. Technical Report UM-CS-2004-096, 2004.
  • 28
    • 34250760344 scopus 로고    scopus 로고
    • Li W, McCallum A. Pachinko allocation: Dag-structured mixture models of topic correlations. In: Proceedings of the 23rd International Conference on Machine Learning (ICML), Pittsburgh, Pennsylvania, June 25-29, 2006, 577-584.
  • 29
    • 33749547161 scopus 로고    scopus 로고
    • Newman D, Chemudugunta C, Smyth P, Steyvers M. Statistical entity-topic models. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, August 20-23, 2006, 680-686.
  • 30
    • 36349023766 scopus 로고    scopus 로고
    • Zhang H, Giles C L, Foley H C, Yen J. Probabilistic community discovery using hierarchical latent Gaussian mixture model. In: Proceedings of 22nd AAAI Conference on Artificial Intelligence, Vancouver, British Columbia, Canada, July 22-26, 2007, 663-668.
  • 31
    • 34547982726 scopus 로고    scopus 로고
    • Dietz L, Bickel S, Scheffer T. Unsupervised prediction of citation influences. In: Proceedings of 24th International Conference on Machine Learning (ICML), Corvallis, Oregon, USA, June 20-24, 2007.
  • 32
    • 77956221485 scopus 로고    scopus 로고
    • Gruber A, Rosen-Zvi M, Weiss Y. Latent topic models for hypertext. In: Proceedings of Uncertainty in Artificial Intelligence (UAI), Helsinki, Finland, July 9-12, 2008.
  • 33
    • 65449166085 scopus 로고    scopus 로고
    • Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z. ArnetMiner: extraction and mining of academic social networks. In: Proceedings of ACM SIGKDD, 2008.
  • 34
    • 77953355924 scopus 로고    scopus 로고
    • Daud A, Li J, Zhu L, Muhammad F. A generalized topic modeling approach for maven search. In: Proceedings of International Asia-Pacific Web Conference and Web-Age Information Management (APWEB-WAIM), Suzhou, China, 2009.
  • 35
    • 77953357941 scopus 로고    scopus 로고
    • Daud A, Li J, Zhu L, Muhammad F. Conference mining via generalized topic modeling. In: Proceedings of European Conference on Machine Learning and Principles and Practices of Knowledge Discovery in Databases (ECML PKDD), Bled, Slovenia, 2009.
  • 37
    • 77953361842 scopus 로고    scopus 로고
    • Gruber A, Rosen-Zvi M, Weiss Y. Hidden topic Markov models. In: Proceedings of Artificial Intelligence and Statistics (AISTATS), San Juan, Puerto Rico, USA, March 21-24, 2007.
  • 38
    • 33749245495 scopus 로고    scopus 로고
    • Wallach J M. Topic modeling: Beyond bag-of-words. In: Proceedings of 23rd International Conference on Machine Learning (ICML), Pittsburgh, Pennsylvania, USA, June 25-29, 2006.
  • 39
    • 33749551461 scopus 로고    scopus 로고
    • Mei Q, Zhai C X. A mixture model for contextual text mining. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, August 20-23, 2006, 649-655.
  • 41
    • 49749087162 scopus 로고    scopus 로고
    • Wang X, McCallum A, Wei X. Topical N-grams: phrase and topic discovery, with an application to information retrieval. In: Proceedings of the 7th IEEE International Conference on Data Mining (ICDM), Omaha NE, USA, October 28-31, 2007.
  • 42
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • Rabiner L R. A tutorial on hidden Markov models and selected applications in speech recognition. In: Proceedings of the IEEE, 1989, 77(2): 257-286.
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 43
    • 33749242628 scopus 로고    scopus 로고
    • Blei D M, Lafferty J. Dynamic topic models. In: Proceedings of 23rd International Conference on Machine Learning (ICML), Pittsburgh, Pennsylvania, USA, June 25-29, 2006.
  • 44
    • 36849047830 scopus 로고    scopus 로고
    • Nallapati R, Cohen W, Ditmore S, Lafferty J, Ung K. Multiscale topic tomography. In: Proceedings of 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Jose, California, USA, August 12-15, 2007.
  • 45
    • 80053284667 scopus 로고    scopus 로고
    • Wang C, Blei M D, Heckerman D. Continuous time dynamic topic models. In: Proceedings of Uncertainty in Artificial Intelligence (UAI), Helsinki, Finland, July 9-12, 2008.
  • 47
    • 33749565782 scopus 로고    scopus 로고
    • Wang X, McCallum A. Topics over time: A non-markov continuous-time model of topical trends. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, USA, August 20-23, 2006.
  • 48
    • 77953357806 scopus 로고    scopus 로고
    • Daud A, Li J, Zhu L, Muhammad F. Exploiting temporal authors interests via temporal-author-topic modeling. In: Proceedings of 5th International Conference on Advance Data Mining and Applications (ADMA), Beijing, China, 2009.
  • 49
    • 1542287501 scopus 로고    scopus 로고
    • Blei D M, Jordan M. Modeling annotated data. In: Proceedings of 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Toronto, Canada, July 28-August 1, 2003, 127-134.
  • 51
    • 1842503081 scopus 로고    scopus 로고
    • An Introduction to Graphical Models
    • Berkeley: University of California
    • Murphy K. An Introduction to Graphical Models. Technical report, University of California, Berkeley, May 2001.
    • (2001) Technical Report
    • Murphy, K.1
  • 52
    • 77953356796 scopus 로고    scopus 로고
    • Bilmes J A. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov modals. Berkeley, ICSI TR-97-021, 1997.
  • 53
    • 77953357754 scopus 로고    scopus 로고
    • Jordan MI, Ghahramani Z, Jaakkola T S, Saul L K. An introduction to variational methods for graphical models. In: Jordan M (Eds), Learning in Graphical Models. MIT Press, 1998.
  • 54
    • 84945258136 scopus 로고    scopus 로고
    • Variational Extensions to EM and Multinomial PCA
    • T. Elomaa (Ed.), Berlin: Springer-Verlag
    • Buntine W. Variational Extensions to EM and Multinomial PCA. In: Elomaa T et al. (Eds.): ECML, LNAI 2430, Springer-Verlag, Berlin, 2002, 23-34.
    • (2002) ECML, LNAI 2430 , pp. 23-34
    • Buntine, W.1
  • 57
    • 77953359651 scopus 로고    scopus 로고
    • Erosheva E A. Grade of membership and latent structure models with applications to disability survey data. Unpublished doctoral dissertation, Department of Statistics, Carnegie Mellon University, 2002.
  • 59
    • 1542287452 scopus 로고    scopus 로고
    • Azzopardi L, Girolami M, Risjbergen K V. Investigating the relationship between language model perplexity and IR precision-recall measures. In: Proceedings of the 26th ACM SIGIR, Toronto, Canada, 2003.
  • 60
    • 44649115198 scopus 로고    scopus 로고
    • Zhang J, Tang J, Liu L, Li J. A mixture model for expert finding. In: Proceedings of the PAKDD, Washio T et al. (Eds). LNAI, 2008, 5012: 466-478.
  • 61
    • 70349200751 scopus 로고    scopus 로고
    • Chang Y L, Chien J T. Latent dirichlet learning for document summarization. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2009.
  • 62
    • 57449121225 scopus 로고    scopus 로고
    • Arora R, Ravindran B. Latent dirichlet allocation based multidocument summarization. In: Proceedings of the 2nd Workshop on Analytics for Noisy Unstructured Rext Data, 2008.
  • 63
    • 63049112029 scopus 로고    scopus 로고
    • Bíró I, Szabó J, Benczúr A A. Latent dirichlet allocation in web spam filtering. In: Proceedings of the Adversarial Information Retrieval on the Web (AIRWeb'08), 2008.
  • 64
    • 77953361024 scopus 로고    scopus 로고
    • Elango P K, Jayaraman K. Clustering images using the latent dirichlet allocation model, 2005.
  • 65
    • 69549129405 scopus 로고    scopus 로고
    • Wang Y, Mori G. Human action recognition by semi-latent topic models. IEEE Transactions on Pattern Analysis and Machine Intelligence Special Issue on Probabilistic Graphical Models in Computer Vision (T-PAMI), 2009.
  • 66
    • 77953360933 scopus 로고    scopus 로고
    • Wang Y, Sabzmeydani P, Mori G. Semi-latent dirichlet allocation: A hierarchical model for fuman action recognition. In: 2nd Workshop on Human Motion Understanding, Modeling, Capture and Animation (ICCV), 2007.
  • 67
    • 77953358478 scopus 로고    scopus 로고
    • Rath T M, Lavrenko V, Manmatha R. A Statistical Approach to Retrieving Historical Manuscript Images Without Recognition. Technical Report, 2003.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.