메뉴 건너뛰기




Volumn 116, Issue 3, 2014, Pages 226-235

Computer aided detection system for micro calcifications in digital mammograms

Author keywords

Artificial neural network (ANN); Histogram equalization (HE); K nearest neighbor classifier (K NN); Micro calcifications (MCCs); Otsu's threshold; Support vector machine (SVM)

Indexed keywords

BIOMINERALIZATION; BONE; DISEASES; FORECASTING; GRAPHIC METHODS; MAMMOGRAPHY; NEURAL NETWORKS; SUPPORT VECTOR MACHINES; X RAY SCREENS;

EID: 84904437352     PISSN: 01692607     EISSN: 18727565     Source Type: Journal    
DOI: 10.1016/j.cmpb.2014.04.010     Document Type: Article
Times cited : (70)

References (31)
  • 1
    • 0038037933 scopus 로고    scopus 로고
    • Mammography with computer - aided detection: reproducibility assessment - initial experience
    • Zheng B., Hardesty L.A., Poller W.R., Sumkin J.H., Golla S. Mammography with computer - aided detection: reproducibility assessment - initial experience. Radiology 2003, 228(1):58-62.
    • (2003) Radiology , vol.228 , Issue.1 , pp. 58-62
    • Zheng, B.1    Hardesty, L.A.2    Poller, W.R.3    Sumkin, J.H.4    Golla, S.5
  • 2
    • 84881615852 scopus 로고    scopus 로고
    • Mammogram image size reduction using 16-8 bit conversion technique
    • Aqel, Saleh H.M. Mammogram image size reduction using 16-8 bit conversion technique. Int. J. Biomed. Sci. 2006, 1:103-110. http://www.waset.org/ijbs/v1/v1-2-14.pdf.
    • (2006) Int. J. Biomed. Sci. , vol.1 , pp. 103-110
    • Aqel Saleh, H.M.1
  • 3
    • 84904432149 scopus 로고    scopus 로고
    • Cancer facts and figures 2011
    • Cancer facts and figures 2011, (2011),. http://www.cancer.org/Cancer/BreastCancer/DetailedGuide/breast-cancer-key-statistics.
    • (2011)
  • 4
    • 85013709368 scopus 로고    scopus 로고
    • Academic Press, CA, United States of America, Elsevier's Science &Technology (Ed.)
    • Theodoridis S., Koutroumbas F K Pattern recognition 2009, Academic Press, CA, United States of America. 4th ed. Elsevier's Science &Technology (Ed.).
    • (2009) Pattern recognition
    • Theodoridis, S.1    Koutroumbas, F.K.2
  • 6
    • 0036127721 scopus 로고    scopus 로고
    • Optimal neural network architecture selection: improvement in computerized detection of microcalcifications
    • Gurcan M.N., PingChang H., Sahiner B., Hadjiiskil L., Petrick N., Helvie M.A. Optimal neural network architecture selection: improvement in computerized detection of microcalcifications. Acad Radiol 2002, 9:420-429.
    • (2002) Acad Radiol , vol.9 , pp. 420-429
    • Gurcan, M.N.1    PingChang, H.2    Sahiner, B.3    Hadjiiskil, L.4    Petrick, N.5    Helvie, M.A.6
  • 7
    • 0142120449 scopus 로고    scopus 로고
    • Computer-aided detection and classification of microcalcifications in mammograms: a survey
    • Cheng H.D., Cai X.P., Chen X.W., Hu L.M., Lou X.L. Computer-aided detection and classification of microcalcifications in mammograms: a survey. Pattern Recognit 2003, 36:2967-2991.
    • (2003) Pattern Recognit , vol.36 , pp. 2967-2991
    • Cheng, H.D.1    Cai, X.P.2    Chen, X.W.3    Hu, L.M.4    Lou, X.L.5
  • 8
    • 63349107095 scopus 로고    scopus 로고
    • Computer aided detection and diagnosis of breast cancer with mammogram: recent advances
    • Tang J., Ranjayyan R., El Naqa I., Yang Y. Computer aided detection and diagnosis of breast cancer with mammogram: recent advances. IEEE Trans Inf Technol Biomed 2009, 13(2):236-251.
    • (2009) IEEE Trans Inf Technol Biomed , vol.13 , Issue.2 , pp. 236-251
    • Tang, J.1    Ranjayyan, R.2    El Naqa, I.3    Yang, Y.4
  • 9
    • 63349107095 scopus 로고    scopus 로고
    • Computer-aided detection and diagnosis of breast cancer with mammography: recent advances
    • Tang J., Rangayyan R.M., Xu J., El Naqa I., Yang Y. Computer-aided detection and diagnosis of breast cancer with mammography: recent advances. IEEE Trans. Inf. Technol. Biomed. 2009, 13(March (2)).
    • (2009) IEEE Trans. Inf. Technol. Biomed. , vol.13 , Issue.MARCH 2
    • Tang, J.1    Rangayyan, R.M.2    Xu, J.3    El Naqa, I.4    Yang, Y.5
  • 10
    • 33751006137 scopus 로고    scopus 로고
    • Automated detection of masses in mammograms by local adaptive thresholding
    • Kom G., Tiedeu A., Kom M. Automated detection of masses in mammograms by local adaptive thresholding. Comput. Biol. Med. 2007, 37(1):37-48.
    • (2007) Comput. Biol. Med. , vol.37 , Issue.1 , pp. 37-48
    • Kom, G.1    Tiedeu, A.2    Kom, M.3
  • 14
    • 84904432150 scopus 로고    scopus 로고
    • MAIS database, (accessed 03.12.07).
    • MAIS database, (accessed 03.12.07). http://peipa.essex.ac.uk/info/mias.html.
  • 16
    • 77954472816 scopus 로고    scopus 로고
    • Segmentation of the breast region in mammograms using snakes
    • Wirth M.A., Stapinski A. Segmentation of the breast region in mammograms using snakes. IEEE 2004.
    • (2004) IEEE
    • Wirth, M.A.1    Stapinski, A.2
  • 17
    • 76349108250 scopus 로고    scopus 로고
    • Dynamic contrast enhancement magnetic resonanace imaging evaluation of Breast Lesions: a morphological and Quantitive analysis
    • Sivarajan U., Jayapragasam K.J., Abdul Aziz Y.F., Rahmat K. Dynamic contrast enhancement magnetic resonanace imaging evaluation of Breast Lesions: a morphological and Quantitive analysis. JHK Coll. Radiol. 2009.
    • (2009) JHK Coll. Radiol.
    • Sivarajan, U.1    Jayapragasam, K.J.2    Abdul Aziz, Y.F.3    Rahmat, K.4
  • 19
    • 0024944225 scopus 로고
    • On techniques for detecting circumscribed masses in mammograms
    • Lai S.M., Li X., Biscof W.F. On techniques for detecting circumscribed masses in mammograms. IEEE Trans. Med. Imaging 1989, l8(4):377-386.
    • (1989) IEEE Trans. Med. Imaging , vol.8 L , Issue.4 , pp. 377-386
    • Lai, S.M.1    Li, X.2    Biscof, W.F.3
  • 20
    • 0018306059 scopus 로고
    • A threshold selection method from grey level histogram
    • Otsu N. A threshold selection method from grey level histogram. IEEE Trans. Syst. Man Cybern. 1979, 9(1):62-66.
    • (1979) IEEE Trans. Syst. Man Cybern. , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 22
    • 0035393651 scopus 로고    scopus 로고
    • Optimum threshold selection using class uncertainty and region homogeneity
    • Saha P.K., Udupa J.K. Optimum threshold selection using class uncertainty and region homogeneity. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23:689-706.
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , pp. 689-706
    • Saha, P.K.1    Udupa, J.K.2
  • 23
    • 0015680481 scopus 로고
    • Dinstein, textural features for image classification
    • Haralick R.M., Shanmugam K. Dinstein, textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3(6):610-621.
    • (1973) IEEE Trans. Syst. Man Cybern. , vol.3 , Issue.6 , pp. 610-621
    • Haralick, R.M.1    Shanmugam, K.2
  • 24
    • 79957668627 scopus 로고    scopus 로고
    • Texture based scene categorization using artificial neural networks and support vector machines: a comparative study
    • ISSN 1687-398X
    • Devendram V., Thiagarajan H. Texture based scene categorization using artificial neural networks and support vector machines: a comparative study. ICGST-GVIP 2008, 8(December (IV)). ISSN 1687-398X.
    • (2008) ICGST-GVIP , vol.8 , Issue.DECEMBER 4
    • Devendram, V.1    Thiagarajan, H.2
  • 26
    • 84904432151 scopus 로고    scopus 로고
    • An investigation of textural characteristics associated with gray level cooccurence
    • A. Baraldi, l. Parmiggiani, An investigation of textural characteristics associated with gray level cooccurence.
    • Baraldi, A.1    Parmiggiani, L.2
  • 27
    • 84863949945 scopus 로고    scopus 로고
    • Artificial neural networks based war scene classification using invariant moments and GLCM features: a comparative study
    • Daniel Madan Raja S., Shanmugam A. Artificial neural networks based war scene classification using invariant moments and GLCM features: a comparative study. Int. J. Eng. Sci. Technol. 2011, 3(2).
    • (2011) Int. J. Eng. Sci. Technol. , vol.3 , Issue.2
    • Daniel Madan Raja, S.1    Shanmugam, A.2
  • 28
    • 61849118024 scopus 로고    scopus 로고
    • Optimal feature selection for classification of power quality disturbances using wavelet packet-based fuzzy k-nearest neighbour algorithm
    • Panigrahi B.K., Pandi V.R. Optimal feature selection for classification of power quality disturbances using wavelet packet-based fuzzy k-nearest neighbour algorithm. Gen. Transm. Distrib. 2009, 3:296-306.
    • (2009) Gen. Transm. Distrib. , vol.3 , pp. 296-306
    • Panigrahi, B.K.1    Pandi, V.R.2
  • 29
    • 85013709368 scopus 로고    scopus 로고
    • Academic Press, CA, United States of America, Elsevier's Science &Technology (Ed.)
    • Theodoridis S., Koutroumbas K. Pattern recognition 2009, Academic Press, CA, United States of America. 4th ed. Elsevier's Science &Technology (Ed.).
    • (2009) Pattern recognition
    • Theodoridis, S.1    Koutroumbas, K.2
  • 30
    • 84904432152 scopus 로고    scopus 로고
    • Wikipedia.
    • Wikipedia. http://en.wikipedia.org/wiki/Support_vector_machine.
  • 31
    • 79151475545 scopus 로고    scopus 로고
    • Expert system based on neuro-fuzzy rules for diagnosis breast cancer
    • Keles A., Keles A., Yavuz U. Expert system based on neuro-fuzzy rules for diagnosis breast cancer. Exp. Syst. Appl. 2011, 5719-5726.
    • (2011) Exp. Syst. Appl. , pp. 5719-5726
    • Keles, A.1    Keles, A.2    Yavuz, U.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.