-
1
-
-
0038166193
-
Database-friendly random projections: Johnson-lindenstrauss with binary coins
-
Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins. J. Comput. Syst. Sci., 66(4):671-687, 2003.
-
(2003)
J. Comput. Syst. Sci.
, vol.66
, Issue.4
, pp. 671-687
-
-
Achlioptas, D.1
-
2
-
-
35348892607
-
Embeddings of surfaces, curves, and moving points in euclidean space
-
Pankaj K. Agarwal, Sariel Har-Peled, and Hai Yu. Embeddings of surfaces, curves, and moving points in euclidean space. In Proceedings of the 24th ACM Symposium on Computational Geometry, pages 381-389, 2008.
-
(2008)
Proceedings of the 24th ACM Symposium on Computational Geometry
, pp. 381-389
-
-
Agarwal, P.K.1
Har-Peled, S.2
Yu, H.3
-
3
-
-
75749141980
-
Faster dimension reduction
-
Nir Ailon and Bernard Chazelle. Faster dimension reduction. Commun. ACM, 53(2):97-104, 2010.
-
(2010)
Commun. ACM
, vol.53
, Issue.2
, pp. 97-104
-
-
Ailon, N.1
Chazelle, B.2
-
4
-
-
84904416183
-
Minimax rates for homology inference
-
Sivaraman Balakrishnan, Alessandro Rinaldo, Don Sheehy, Aarti Singh, and Larry A. Wasserman. Minimax rates for homology inference. Journal of Machine Learning Research - Proceedings Track, 22:64-72, 2012.
-
(2012)
Journal of Machine Learning Research - Proceedings Track
, vol.22
, pp. 64-72
-
-
Balakrishnan, S.1
Rinaldo, A.2
Sheehy, D.3
Singh, A.4
Wasserman, L.A.5
-
6
-
-
84897006780
-
Clear and compress: Computing persistent homology in chunks
-
Ulrich Bauer, Michael Kerber, and Jan Reininghaus. Clear and compress: Computing persistent homology in chunks. In TopoInVis, 2013.
-
(2013)
TopoInVis
-
-
Bauer, U.1
Kerber, M.2
Reininghaus, J.3
-
7
-
-
79961009224
-
A weighted k-nearest neighbor density estimate for geometric inference
-
Gérard Biau, Frédéric Chazal, David Cohen-Steiner, Luc Devroye, and Carlos Rodríguez. A weighted k-nearest neighbor density estimate for geometric inference. Electron. J. Statist., 5:204-237, 2011.
-
(2011)
Electron. J. Statist.
, vol.5
, pp. 204-237
-
-
Biau, G.1
Chazal, F.2
Cohen-Steiner, D.3
Devroye, L.4
Rodríguez, C.5
-
15
-
-
33244473496
-
Weak feature size and persistent homology: Computing homology of solids in Rn from noisy data samples
-
Frédéric Chazal and André Lieutier. Weak feature size and persistent homology: Computing homology of solids in Rn from noisy data samples. In Proc. of the 21st ACM Symposium on Computational Geometry, pages 255-262, 2005.
-
(2005)
Proc. of the 21st ACM Symposium on Computational Geometry
, pp. 255-262
-
-
Chazal, F.1
Lieutier, A.2
-
18
-
-
33846839317
-
Stability of persistence diagrams
-
David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Stability of persistence diagrams. Discrete & Computational Geometry, 37(1):103-120, 2007.
-
(2007)
Discrete & Computational Geometry
, vol.37
, Issue.1
, pp. 103-120
-
-
Cohen-Steiner, D.1
Edelsbrunner, H.2
Harer, J.3
-
19
-
-
41849094721
-
Coverage in sensor networks via persistent homology
-
Vin de Silva and Robert Ghrist. Coverage in sensor networks via persistent homology. Algorithmic & Geometric Topology, 7:339-358, 2007.
-
(2007)
Algorithmic & Geometric Topology
, vol.7
, pp. 339-358
-
-
De Silva, V.1
Ghrist, R.2
-
21
-
-
0036883297
-
Topological persistence and simpligfication
-
Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and simpligfication. Discrete & Computational Geometry, 4(28):511-533, 2002.
-
(2002)
Discrete & Computational Geometry
, vol.4
, Issue.28
, pp. 511-533
-
-
Edelsbrunner, H.1
Letscher, D.2
Zomorodian, A.3
-
22
-
-
6044256330
-
The smallest enclosing ball of balls: Combinatorial structure and algorithms
-
October
-
Kaspar Fischer and Bernd Gärtner. The smallest enclosing ball of balls: Combinatorial structure and algorithms. Int. J. Comput. Geometry Appl., 14(4-5):341-378, October 2004.
-
(2004)
Int. J. Comput. Geometry Appl.
, vol.14
, Issue.4-5
, pp. 341-378
-
-
Fischer, K.1
Gärtner, B.2
-
23
-
-
84872347694
-
Witnessed k-distance
-
Leonidas Guibas, Dmitriy Morozov, and Quentin Mérigot. Witnessed k-distance. Discrete & Computational Geometry, 49(1):22-45, 2013.
-
(2013)
Discrete & Computational Geometry
, vol.49
, Issue.1
, pp. 22-45
-
-
Guibas, L.1
Morozov, D.2
Mérigot, Q.3
-
24
-
-
84871949205
-
Approximate nearest neighbor: Towards removing the curse of dimensionality
-
Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards removing the curse of dimensionality. Theory of Computing, 8(1):321-350, 2012.
-
(2012)
Theory of Computing
, vol.8
, Issue.1
, pp. 321-350
-
-
Har-Peled, S.1
Indyk, P.2
Motwani, R.3
-
26
-
-
0001654702
-
Extensions of Lipschitz mappings into a Hilbert space
-
William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math., 26:189-206, 1984.
-
(1984)
Contemp. Math.
, vol.26
, pp. 189-206
-
-
Johnson, W.B.1
Lindenstrauss, J.2
-
27
-
-
84860156141
-
Sparser Johnson-Lindenstrauss transforms
-
Daniel M. Kane and Jelani Nelson. Sparser Johnson-Lindenstrauss transforms. In SODA, pages 1195-1206, 2012.
-
(2012)
SODA
, pp. 1195-1206
-
-
Kane, D.M.1
Nelson, J.2
-
28
-
-
84904423330
-
Approximate cech complexes in low and high dimensions
-
Michael Kerber and R. Sharathkumar. Approximate cech complexes in low and high dimensions. In ISAAC, 2013.
-
(2013)
ISAAC
-
-
Kerber, M.1
Sharathkumar, R.2
-
30
-
-
34249869871
-
Dimensionality reductions in '2 that preserve volumes and distance to afine spaces
-
Avner Magen. Dimensionality reductions in '2 that preserve volumes and distance to afine spaces. Discrete & Computational Geometry, 38(1):139-153, 2007.
-
(2007)
Discrete & Computational Geometry
, vol.38
, Issue.1
, pp. 139-153
-
-
Magen, A.1
-
31
-
-
51849127391
-
Near optimal dimensionality reductions that preserve volumes
-
Avner Magen and Anastasios Zouzias. Near optimal dimensionality reductions that preserve volumes. In RANDOM, pages 523-534, 2008.
-
(2008)
Random
, pp. 523-534
-
-
Magen, A.1
Zouzias, A.2
-
33
-
-
84881611962
-
Morse theory for filtrations and efficient computation of persistent homology
-
Konstantin Mischaikow and Vidit Nanda. Morse theory for filtrations and efficient computation of persistent homology. Discrete & Computational Geometry, 50(2):330-353, 2013.
-
(2013)
Discrete & Computational Geometry
, vol.50
, Issue.2
, pp. 330-353
-
-
Mischaikow, K.1
Nanda, V.2
-
34
-
-
40349102105
-
Finding the homology of submanifolds with high confidence from random samples
-
Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds with high confidence from random samples. Discrete & Computational Geometry, 39(1-3):419-441, 2008.
-
(2008)
Discrete & Computational Geometry
, vol.39
, Issue.1-3
, pp. 419-441
-
-
Niyogi, P.1
Smale, S.2
Weinberger, S.3
-
35
-
-
79960379431
-
A topological view of unsupervised learning from noisy data
-
Partha Niyogi, Stephen Smale, and Shmuel Weinberger. A topological view of unsupervised learning from noisy data. SIAM J. Comput., 40(3):646-663, 2011.
-
(2011)
SIAM J. Comput.
, vol.40
, Issue.3
, pp. 646-663
-
-
Niyogi, P.1
Smale, S.2
Weinberger, S.3
-
37
-
-
35348901208
-
Improved approximation algorithms for large matrices via random projections
-
Tamás Sarlós. Improved approximation algorithms for large matrices via random projections. In FOCS, pages 143-152, 2006.
-
(2006)
FOCS
, pp. 143-152
-
-
Sarlós, T.1
-
39
-
-
84879324191
-
Linear-size approximations to the Vietoris-Rips filtration
-
Donald R. Sheehy. Linear-size approximations to the Vietoris-Rips filtration. Discrete & Computational Geometry, 49(4):778-796, 2013.
-
(2013)
Discrete & Computational Geometry
, vol.49
, Issue.4
, pp. 778-796
-
-
Sheehy, D.R.1
-
40
-
-
84885661626
-
A note on random projections for preserving paths on a manifold
-
UC San Diego
-
Nakul Verma. A note on random projections for preserving paths on a manifold. Technical Report CS2011-0971, UC San Diego, 2011.
-
(2011)
Technical Report CS2011-0971
-
-
Verma, N.1
|