메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages 2055-2060

Pystruct - Learning structured prediction in python

Author keywords

Conditional random fields; Python; Structural support vector machines; Structured prediction

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; FORECASTING;

EID: 84904362755     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (86)

References (18)
  • 1
    • 84866657764 scopus 로고    scopus 로고
    • SLIC superpixels compared to state-of-The-art superpixel methods
    • Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk. SLIC superpixels compared to state-of-the-art superpixel methods. PAMI, 2012.
    • (2012) PAMI
    • Achanta, R.1    Shaji, A.2    Smith, K.3    Lucchi, A.4    Fua, P.5    Süsstrunk, S.6
  • 3
    • 56449113929 scopus 로고    scopus 로고
    • Training structural SVMs when exact inference is intractable
    • Thomas Finley and Thorsten Joachims. Training structural SVMs when exact inference is intractable. In ICML, 2008.
    • (2008) ICML
    • Finley, T.1    Joachims, T.2
  • 4
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural SVMs
    • Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training of structural SVMs. JMLR, 77(1), 2009.
    • (2009) JMLR , vol.77 , Issue.1
    • Joachims, T.1    Finley, T.2    John Yu, C.-N.3
  • 6
    • 70349425850 scopus 로고    scopus 로고
    • Dlib-ml: A machine learning toolkit
    • Davis E. King. Dlib-ml: A machine learning toolkit. JMLR, 10, 2009.
    • (2009) JMLR , vol.10
    • King, D.E.1
  • 7
    • 84897465786 scopus 로고    scopus 로고
    • Efficient inference in fully connected CRFs with Gaussian edge potentials
    • Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected CRFs with Gaussian edge potentials. In NIPS, 2012.
    • (2012) NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 9
    • 77956556288 scopus 로고    scopus 로고
    • Learning efficiently with approximate inference via dual losses
    • Ofer Meshi, David Sontag, Tommi Jaakkola, and Amir Globerson. Learning efficiently with approximate inference via dual losses. In ICML, 2010.
    • (2010) ICML
    • Meshi, O.1    Sontag, D.2    Jaakkola, T.3    Globerson, A.4
  • 10
    • 77956951736 scopus 로고    scopus 로고
    • LibDAI: A free and open source C++ library for discrete approximate inference in graphical models
    • Joris M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference in graphical models. JMLR, 2010.
    • (2010) JMLR
    • Mooij, J.M.1
  • 11
    • 34948881770 scopus 로고    scopus 로고
    • Latent-dynamic discriminative models for continuous gesture recognition
    • L-P Morency, Ariadna Quattoni, and Trevor Darrell. Latent-dynamic discriminative models for continuous gesture recognition. In CVPR, 2007.
    • (2007) CVPR
    • Morency, L.-P.1    Quattoni, A.2    Darrell, T.3
  • 15
    • 72449164388 scopus 로고    scopus 로고
    • Subgradient methods for structured prediction
    • Nathan Ratliff, J. Andrew (Drew) Bagnell, and Martin Zinkevich. (Online) subgradient methods for structured prediction. In AISTATS, 2007.
    • (2007) AISTATS
    • Ratliff, N.1    Bagnell, J.A.2    Zinkevich, M.3
  • 16
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Altun, and Yoram Singer. Large margin methods for structured and interdependent output variables. JMLR, 6(2), 2006.
    • (2006) JMLR , vol.6 , Issue.2
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4    Singer, Y.5
  • 18
    • 71149086466 scopus 로고    scopus 로고
    • Learning structural SVMs with latent variables
    • Chun-Nam John Yu and Thorsten Joachims. Learning structural SVMs with latent variables. In ICML, 2009.
    • (2009) ICML
    • John Yu, C.-N.1    Joachims, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.