-
1
-
-
84866657764
-
SLIC superpixels compared to state-of-The-art superpixel methods
-
Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk. SLIC superpixels compared to state-of-the-art superpixel methods. PAMI, 2012.
-
(2012)
PAMI
-
-
Achanta, R.1
Shaji, A.2
Smith, K.3
Lucchi, A.4
Fua, P.5
Süsstrunk, S.6
-
3
-
-
56449113929
-
Training structural SVMs when exact inference is intractable
-
Thomas Finley and Thorsten Joachims. Training structural SVMs when exact inference is intractable. In ICML, 2008.
-
(2008)
ICML
-
-
Finley, T.1
Joachims, T.2
-
4
-
-
69549111057
-
Cutting-plane training of structural SVMs
-
Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. Cutting-plane training of structural SVMs. JMLR, 77(1), 2009.
-
(2009)
JMLR
, vol.77
, Issue.1
-
-
Joachims, T.1
Finley, T.2
John Yu, C.-N.3
-
5
-
-
84887352082
-
A comparative study of modern inference techniques for discrete energy minimization problems
-
Jörg H Kappes, Bjoern Andres, Fred A Hamprecht, Christoph Schnörr, Sebastian Nowozin, Dhruv Batra, Sungwoong Kim, Bernhard X Kausler, Jan Lellmann, Nikos Komodakis, et al. A comparative study of modern inference techniques for discrete energy minimization problems. In CVPR, 2013.
-
(2013)
CVPR
-
-
Kappes, J.H.1
Andres, B.2
Hamprecht, F.A.3
Schnörr, C.4
Nowozin, S.5
Batra, D.6
Kim, S.7
Kausler, B.X.8
Lellmann, J.9
Komodakis, N.10
-
6
-
-
70349425850
-
Dlib-ml: A machine learning toolkit
-
Davis E. King. Dlib-ml: A machine learning toolkit. JMLR, 10, 2009.
-
(2009)
JMLR
, vol.10
-
-
King, D.E.1
-
7
-
-
84897465786
-
Efficient inference in fully connected CRFs with Gaussian edge potentials
-
Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected CRFs with Gaussian edge potentials. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krähenbühl, P.1
Koltun, V.2
-
9
-
-
77956556288
-
Learning efficiently with approximate inference via dual losses
-
Ofer Meshi, David Sontag, Tommi Jaakkola, and Amir Globerson. Learning efficiently with approximate inference via dual losses. In ICML, 2010.
-
(2010)
ICML
-
-
Meshi, O.1
Sontag, D.2
Jaakkola, T.3
Globerson, A.4
-
10
-
-
77956951736
-
LibDAI: A free and open source C++ library for discrete approximate inference in graphical models
-
Joris M. Mooij. libDAI: A free and open source C++ library for discrete approximate inference in graphical models. JMLR, 2010.
-
(2010)
JMLR
-
-
Mooij, J.M.1
-
11
-
-
34948881770
-
Latent-dynamic discriminative models for continuous gesture recognition
-
L-P Morency, Ariadna Quattoni, and Trevor Darrell. Latent-dynamic discriminative models for continuous gesture recognition. In CVPR, 2007.
-
(2007)
CVPR
-
-
Morency, L.-P.1
Quattoni, A.2
Darrell, T.3
-
14
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in Python. JMLR, 2011.
-
(2011)
JMLR
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
-
15
-
-
72449164388
-
Subgradient methods for structured prediction
-
Nathan Ratliff, J. Andrew (Drew) Bagnell, and Martin Zinkevich. (Online) subgradient methods for structured prediction. In AISTATS, 2007.
-
(2007)
AISTATS
-
-
Ratliff, N.1
Bagnell, J.A.2
Zinkevich, M.3
-
16
-
-
24944537843
-
Large margin methods for structured and interdependent output variables
-
Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, Yasemin Altun, and Yoram Singer. Large margin methods for structured and interdependent output variables. JMLR, 6(2), 2006.
-
(2006)
JMLR
, vol.6
, Issue.2
-
-
Tsochantaridis, I.1
Joachims, T.2
Hofmann, T.3
Altun, Y.4
Singer, Y.5
-
17
-
-
80053457712
-
Samplerank: Training factor graphs with atomic gradients
-
Michael Wick, Khashayar Rohanimanesh, Kedar Bellare, Aron Culotta, and Andrew Mc- Callum. Samplerank: Training factor graphs with atomic gradients. In ICML, 2011.
-
(2011)
ICML
-
-
Wick, M.1
Rohanimanesh, K.2
Bellare, K.3
Culotta, A.4
Mc-Callum, A.5
-
18
-
-
71149086466
-
Learning structural SVMs with latent variables
-
Chun-Nam John Yu and Thorsten Joachims. Learning structural SVMs with latent variables. In ICML, 2009.
-
(2009)
ICML
-
-
John Yu, C.-N.1
Joachims, T.2
|