메뉴 건너뛰기




Volumn , Issue , 2014, Pages 99-110

Density-based place clustering in geo-social networks

Author keywords

Density based clustering; Geo social network; Spatial indexing

Indexed keywords

ALGORITHMS; INDEXING (OF INFORMATION); SOCIAL NETWORKING (ONLINE);

EID: 84904346258     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2588555.2610497     Document Type: Conference Paper
Times cited : (77)

References (41)
  • 1
    • 77955518815 scopus 로고    scopus 로고
    • Link communities reveal multiscale complexity in networks
    • Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. Link communities reveal multiscale complexity in networks. Nature, 466:761-764, 2010.
    • (2010) Nature , vol.466 , pp. 761-764
    • Ahn, Y.-Y.1    Bagrow, J.P.2    Lehmann, S.3
  • 2
    • 84877899863 scopus 로고    scopus 로고
    • Scalable analysis of movement data for extracting and exploring significant places
    • G. L. Andrienko, N. V. Andrienko, C. Hurter, S. Rinzivillo, and S. Wrobel. Scalable analysis of movement data for extracting and exploring significant places. IEEE TVCG, 19(7):1078-1094, 2013.
    • (2013) IEEE TVCG , vol.19 , Issue.7 , pp. 1078-1094
    • Andrienko, G.L.1    Andrienko, N.V.2    Hurter, C.3    Rinzivillo, S.4    Wrobel, S.5
  • 3
    • 0347172110 scopus 로고    scopus 로고
    • Optics: Ordering points to identify the clustering structure
    • M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. Optics: Ordering points to identify the clustering structure. In SIGMOD, 1999.
    • (1999) SIGMOD
    • Ankerst, M.1    Breunig, M.M.2    Kriegel, H.-P.3    Sander, J.4
  • 4
    • 84891139258 scopus 로고    scopus 로고
    • A general framework for geo-social query processing
    • N. Armenatzoglou, S. Papadopoulos, and D. Papadias. A general framework for geo-social query processing. PVLDB, 6(10):913-924, 2013.
    • (2013) PVLDB , vol.6 , Issue.10 , pp. 913-924
    • Armenatzoglou, N.1    Papadopoulos, S.2    Papadias, D.3
  • 5
    • 77954590940 scopus 로고    scopus 로고
    • Find me if you can: Improving geographical prediction with social and spatial proximity
    • L. Backstrom, E. Sun, and C. Marlow. Find me if you can: Improving geographical prediction with social and spatial proximity. In WWW, 2010.
    • (2010) WWW
    • Backstrom, L.1    Sun, E.2    Marlow, C.3
  • 7
    • 80052648113 scopus 로고    scopus 로고
    • Friendship and mobility: User movement in location-based social networks
    • E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement in location-based social networks. In KDD, 2011.
    • (2011) KDD
    • Cho, E.1    Myers, S.A.2    Leskovec, J.3
  • 8
    • 41349117788 scopus 로고    scopus 로고
    • Finding community structure in very large networks
    • A. Clauset, M. E. Newman, and C. Moore. Finding community structure in very large networks. Physical review E, 70(6):066111, 2004.
    • (2004) Physical Review e , vol.70 , Issue.6 , pp. 066111
    • Clauset, A.1    Newman, M.E.2    Moore, C.3
  • 9
    • 45749146270 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, 1996.
    • (1996) KDD
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 11
    • 0032091595 scopus 로고    scopus 로고
    • Cure: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering algorithm for large databases. In SIGMOD, 1998.
    • (1998) SIGMOD
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 13
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise
    • A. Hinneburg and D. A. Keim. An efficient approach to clustering in large multimedia databases with noise. In KDD, 1998.
    • (1998) KDD
    • Hinneburg, A.1    Keim, D.A.2
  • 15
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical clustering using dynamic modeling
    • G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering using dynamic modeling. IEEE Computer, 32(8):68-75, 1999.
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.-H.2    Kumar, V.3
  • 16
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359-392, 1998.
    • (1998) SIAM Journal on Scientific Computing , vol.20 , Issue.1 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 17
    • 34248205060 scopus 로고    scopus 로고
    • Graph evolution: Densification and shrinking diameters
    • J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking diameters. TKDD, 1(1), 2007.
    • (2007) TKDD , vol.1 , Issue.1
    • Leskovec, J.1    Kleinberg, J.M.2    Faloutsos, C.3
  • 18
    • 77954653623 scopus 로고    scopus 로고
    • Empirical comparison of algorithms for network community detection
    • J. Leskovec, K. J. Lang, and M. W. Mahoney. Empirical comparison of algorithms for network community detection. In WWW, 2010.
    • (2010) WWW
    • Leskovec, J.1    Lang, K.J.2    Mahoney, M.W.3
  • 20
    • 0002687371 scopus 로고
    • The small world problem
    • S. Milgram. The small world problem. Psychology today, 2(1):60-67, 1967.
    • (1967) Psychology Today , vol.2 , Issue.1 , pp. 60-67
    • Milgram, S.1
  • 22
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, 2001.
    • (2001) NIPS
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 23
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • R. T. Ng and J. Han. Efficient and effective clustering methods for spatial data mining. In VLDB, 1994.
    • (1994) VLDB
    • Ng, R.T.1    Han, J.2
  • 24
    • 84880535160 scopus 로고    scopus 로고
    • Ebm: An entropy-based model to infer social strength from spatiotemporal data
    • H. Pham, C. Shahabi, and Y. Liu. Ebm: an entropy-based model to infer social strength from spatiotemporal data. In SIGMOD, 2013.
    • (2013) SIGMOD
    • Pham, H.1    Shahabi, C.2    Liu, Y.3
  • 25
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: The algorithm gdbscan and its applications
    • J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spatial databases: The algorithm gdbscan and its applications. Data Min. Knowl. Discov., 2(2):169-194, 1998.
    • (1998) Data Min. Knowl. Discov. , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.-P.3    Xu, X.4
  • 26
    • 80053203488 scopus 로고    scopus 로고
    • A tractable approach to finding closest truncated-commute-time neighbors in large graphs
    • P. Sarkar and A. W. Moore. A tractable approach to finding closest truncated-commute-time neighbors in large graphs. In UAI, 2007.
    • (2007) UAI
    • Sarkar, P.1    Moore, A.W.2
  • 27
    • 85124442007 scopus 로고    scopus 로고
    • Socio-spatial properties of online location-based social networks
    • S. Scellato, A. Noulas, R. Lambiotte, and C. Mascolo. Socio-spatial properties of online location-based social networks. In ICWSM, 2011.
    • (2011) ICWSM
    • Scellato, S.1    Noulas, A.2    Lambiotte, R.3    Mascolo, C.4
  • 28
    • 80052653727 scopus 로고    scopus 로고
    • Exploiting place features in link prediction on location-based social networks
    • S. Scellato, A. Noulas, and C. Mascolo. Exploiting place features in link prediction on location-based social networks. In KDD, 2011.
    • (2011) KDD
    • Scellato, S.1    Noulas, A.2    Mascolo, C.3
  • 29
    • 0002756123 scopus 로고
    • An inverse distance variation for certain social influence
    • J. Q. Stewart. An inverse distance variation for certain social influence. Science, 93(2404):89-90, 1941.
    • (1941) Science , vol.93 , Issue.2404 , pp. 89-90
    • Stewart, J.Q.1
  • 31
    • 36849058149 scopus 로고    scopus 로고
    • A framework for community identification in dynamic social networks
    • C. Tantipathananandh, T. Y. Berger-Wolf, and D. Kempe. A framework for community identification in dynamic social networks. In KDD, 2007.
    • (2007) KDD
    • Tantipathananandh, C.1    Berger-Wolf, T.Y.2    Kempe, D.3
  • 33
    • 49749117074 scopus 로고    scopus 로고
    • Local probabilistic models for link prediction
    • C. Wang, V. Satuluri, and S. Parthasarathy. Local probabilistic models for link prediction. In ICDM, 2007.
    • (2007) ICDM
    • Wang, C.1    Satuluri, V.2    Parthasarathy, S.3
  • 35
    • 36949010345 scopus 로고    scopus 로고
    • Scan: A structural clustering algorithm for networks
    • X. Xu, N. Yuruk, Z. Feng, and T. A. J. Schweiger. Scan: a structural clustering algorithm for networks. In KDD, 2007.
    • (2007) KDD
    • Xu, X.1    Yuruk, N.2    Feng, Z.3    Schweiger, T.A.J.4
  • 36
    • 84866046517 scopus 로고    scopus 로고
    • On socio-spatial group query for location-based social networks
    • D.-N. Yang, C.-Y. Shen, W.-C. Lee, and M.-S. Chen. On socio-spatial group query for location-based social networks. In KDD, 2012.
    • (2012) KDD
    • Yang, D.-N.1    Shen, C.-Y.2    Lee, W.-C.3    Chen, M.-S.4
  • 37
    • 78650589837 scopus 로고    scopus 로고
    • Location recommendation for location-based social networks
    • M. Ye, P. Yin, and W.-C. Lee. Location recommendation for location-based social networks. In GIS, 2010.
    • (2010) GIS
    • Ye, M.1    Yin, P.2    Lee, W.-C.3
  • 38
    • 3142660421 scopus 로고    scopus 로고
    • Clustering objects on a spatial network
    • M. L. Yiu and N. Mamoulis. Clustering objects on a spatial network. In SIGMOD, 2004.
    • (2004) SIGMOD
    • Yiu, M.L.1    Mamoulis, N.2
  • 39
    • 75749096602 scopus 로고    scopus 로고
    • An adaptive unsupervised approach toward pixel clustering and color image segmentation
    • Z. Yu, O. C. Au, R. Zou, W. Yu, and J. Tian. An adaptive unsupervised approach toward pixel clustering and color image segmentation. Pattern Recognition, 43(5):1889-1906, 2010.
    • (2010) Pattern Recognition , vol.43 , Issue.5 , pp. 1889-1906
    • Yu, Z.1    Au, O.C.2    Zou, R.3    Yu, W.4    Tian, J.5
  • 40
    • 80052541100 scopus 로고    scopus 로고
    • Geo-spatial clustering with non-spatial attributes and geographic non-overlapping constraint: A penalized spatial distance measure
    • B. Zhang, W. J. Yin, M. Xie, and J. Dong. Geo-spatial clustering with non-spatial attributes and geographic non-overlapping constraint: A penalized spatial distance measure. In PAKDD, 2007.
    • (2007) PAKDD
    • Zhang, B.1    Yin, W.J.2    Xie, M.3    Dong, J.4
  • 41
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering method for very large databases. In SIGMOD, 1996.
    • (1996) SIGMOD
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.