-
1
-
-
0001690318
-
A spectral technique for coloring random 3-colorable graphs
-
N. Alon and N. Kahale, A spectral technique for coloring random 3-colorable graphs, SIAM J Comput, 26(6) (1997), 1733-1748.
-
(1997)
SIAM J Comput
, vol.26
, Issue.6
, pp. 1733-1748
-
-
Alon, N.1
Kahale, N.2
-
2
-
-
0032221884
-
Finding a large hidden clique in a random graph
-
N. Alon, M. Krivelevich, and B. Sudakov, Finding a large hidden clique in a random graph, Random Structures Algorithms 13(3-4) (1988), 457-466.
-
(1988)
Random Structures Algorithms
, vol.13
, Issue.3-4
, pp. 457-466
-
-
Alon, N.1
Krivelevich, M.2
Sudakov, B.3
-
8
-
-
35248826861
-
Max k-CUT and approximating the chromatic number of random graphs
-
A. Coja-Oghlan, C. Moore, and V. Sanvalani, Max k-CUT and approximating the chromatic number of random graphs, Proc 30th Int Coll Automata, Languages and Programming, 2003, pp. 200-211.
-
(2003)
Proc 30th Int Coll Automata, Languages and Programming
, pp. 200-211
-
-
Coja-Oghlan, A.1
Moore, C.2
Sanvalani, V.3
-
9
-
-
0036038682
-
Relations between average case complexity and approximation complexity
-
U. Feige, Relations between average case complexity and approximation complexity, Proc 34th Annu ACM Symp Theory of Computing, 2002, pp. 534-543.
-
(2002)
Proc 34th Annu ACM Symp Theory of Computing
, pp. 534-543
-
-
Feige, U.1
-
10
-
-
0035734153
-
Heuristics for semirandom graph problems
-
U. Feige and J. Kilian, Heuristics for semirandom graph problems, J Comput System Sci 63(4) 2001, pp. 639-671.
-
(2001)
J Comput System Sci
, vol.63
, Issue.4
, pp. 639-671
-
-
Feige, U.1
Kilian, J.2
-
11
-
-
0034406149
-
Finding and certifying a large hidden clique in a semirandom graph
-
U. Feige and R. Krauthgamer, Finding and certifying a large hidden clique in a semirandom graph, Random Structures Algorithms, 16(2) (2000), 195-208.
-
(2000)
Random Structures Algorithms
, vol.16
, Issue.2
, pp. 195-208
-
-
Feige, U.1
Krauthgamer, R.2
-
13
-
-
0024865227
-
On the second eigenvalue in random regular graphs
-
J. Friedman, J. Kahn, and E. Szemeredi, On the second eigenvalue in random regular graphs, Proc Twenty First Annu ACM Symp Theory of Computing, 1989, pp. 587-598.
-
(1989)
Proc Twenty First Annu ACM Symp Theory of Computing
, pp. 587-598
-
-
Friedman, J.1
Kahn, J.2
Szemeredi, E.3
-
14
-
-
51249182622
-
The eigenvalues of random symmetric matrices
-
Z. Furedi and J. Komlos, The eigenvalues of random symmetric matrices, Combinatorica 1(3) (1981), 233-241.
-
(1981)
Combinatorica
, vol.1
, Issue.3
, pp. 233-241
-
-
Furedi, Z.1
Komlos, J.2
-
15
-
-
84893574327
-
Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming
-
M. Goemans and D. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming, J ACM 42 (1995), 1115-1145.
-
(1995)
J ACM
, vol.42
, pp. 1115-1145
-
-
Goemans, M.1
Williamson, D.2
-
17
-
-
51249184218
-
The asymptotic behaviour of the Lovász theta function for random graphs
-
F. Juhász, The asymptotic behaviour of the Lovász theta function for random graphs, Combinatorica 2(2) (1982), 153-155.
-
(1982)
Combinatorica
, vol.2
, Issue.2
, pp. 153-155
-
-
Juhász, F.1
-
18
-
-
0037258888
-
The largest eigenvalue of sparse random graphs
-
M. Krivelevich and B. Sudakov, The largest eigenvalue of sparse random graphs, Combin Probab Comput 12 (2003), 61-72.
-
(2003)
Combin Probab Comput
, vol.12
, pp. 61-72
-
-
Krivelevich, M.1
Sudakov, B.2
-
19
-
-
0018292109
-
On the Shannon capcity of a graph
-
L. Lovász, On the Shannon capcity of a graph, IEEE Trans Inform Theory IT-25 (1979), 1-7.
-
(1979)
IEEE Trans Inform Theory
, vol.IT-25
, pp. 1-7
-
-
Lovász, L.1
-
21
-
-
0032631766
-
Outward rotations: A tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems
-
U. Zwick, Outward rotations: A tool for rounding solutions of semidefinite programming relaxations, with applications to MAX CUT and other problems, Proc 31st Annu ACM Symp Theory of Computing 1999, pp. 679-687.
-
(1999)
Proc 31st Annu ACM Symp Theory of Computing
, pp. 679-687
-
-
Zwick, U.1
|