메뉴 건너뛰기




Volumn 23, Issue , 2014, Pages 128-143

Comparison of evolutionary and swarm based computational techniques for multilevel color image thresholding

Author keywords

Color image thresholding; Evolutionary optimization algorithms; Swarm based optimization algorithms

Indexed keywords

COLOR IMAGE PROCESSING; GENETIC ALGORITHMS; IMAGE SEGMENTATION; OBJECT RECOGNITION; PARTICLE SWARM OPTIMIZATION (PSO); PROBLEM SOLVING; VIDEO SIGNAL PROCESSING;

EID: 84903950329     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.05.037     Document Type: Article
Times cited : (119)

References (58)
  • 1
    • 0031377116 scopus 로고    scopus 로고
    • A fast multilevel thresholding method based on lowpass and highpass filtering
    • C.C. Chang, and L.L. Wang A fast multilevel thresholding method based on lowpass and highpass filtering Pattern Recogn. Lett. 18 1997 1469 1478
    • (1997) Pattern Recogn. Lett. , vol.18 , pp. 1469-1478
    • Chang, C.C.1    Wang, L.L.2
  • 2
    • 84887458727 scopus 로고    scopus 로고
    • Multilevel thresholding segmentation based on harmony search optimization
    • D. Oliva, and E. Cuevas et al. Multilevel thresholding segmentation based on harmony search optimization J. Appl. Math. 2013 2013 1 24
    • (2013) J. Appl. Math. , vol.2013 , pp. 1-24
    • Oliva, D.1    Cuevas, E.2
  • 3
    • 0034258712 scopus 로고    scopus 로고
    • Optimizing block-thresholding segmentation for multilayer compression of compound images
    • R.L. de Queiroz, Z.G. Fan, and T.D. Tran Optimizing block-thresholding segmentation for multilayer compression of compound images IEEE Trans. Image Process. 9 2000 1461 1471
    • (2000) IEEE Trans. Image Process. , vol.9 , pp. 1461-1471
    • De Queiroz, R.L.1    Fan, Z.G.2    Tran, T.D.3
  • 4
    • 37849186403 scopus 로고    scopus 로고
    • Medical ultrasound image compression using joint optimization of thresholding quantization and best-basis selection of wavelet packets
    • L. Kaur et al. Medical ultrasound image compression using joint optimization of thresholding quantization and best-basis selection of wavelet packets Digital Signal Process. 17 2007 189 198
    • (2007) Digital Signal Process. , vol.17 , pp. 189-198
    • Kaur, L.1
  • 5
    • 34250797578 scopus 로고    scopus 로고
    • A new multistage lattice vector quantization with adaptive subband thresholding for image compression
    • M.F.M. Salleh, and J. Soraghan A new multistage lattice vector quantization with adaptive subband thresholding for image compression Eurasip J. Adv. Signal Process. 2007 2007 1 11
    • (2007) Eurasip J. Adv. Signal Process. , vol.2007 , pp. 1-11
    • Salleh, M.F.M.1    Soraghan, J.2
  • 6
    • 83655201285 scopus 로고    scopus 로고
    • Intelligent region-based thresholding for color document images with highlighted regions
    • C.M. Tsai Intelligent region-based thresholding for color document images with highlighted regions Pattern Recogn. 45 2012 1341 1362
    • (2012) Pattern Recogn. , vol.45 , pp. 1341-1362
    • Tsai, C.M.1
  • 7
    • 81755165904 scopus 로고    scopus 로고
    • Graphical thresholding procedure and optimal light level estimation for spatially resolved photon counting with EMCCDs
    • O. Jedrkiewicz et al. Graphical thresholding procedure and optimal light level estimation for spatially resolved photon counting with EMCCDs Opt. Commun. 285 2012 218 224
    • (2012) Opt. Commun. , vol.285 , pp. 218-224
    • Jedrkiewicz, O.1
  • 8
    • 33746863320 scopus 로고    scopus 로고
    • Adaptive image thresholding for real-time particle monitoring
    • K. Torabi, S. Sayad, and S.T. Balke Adaptive image thresholding for real-time particle monitoring Int. J. Imaging Syst. Technol. 16 2006 9 14
    • (2006) Int. J. Imaging Syst. Technol. , vol.16 , pp. 9-14
    • Torabi, K.1    Sayad, S.2    Balke, S.T.3
  • 9
    • 22844453226 scopus 로고    scopus 로고
    • Online pattern recognition in noisy background by means of wavelet coefficients thresholding
    • J. Mazzaferri, and S. Ledesma Online pattern recognition in noisy background by means of wavelet coefficients thresholding J. Opt. A - Pure Appl. Opt. 7 2005 296 302
    • (2005) J. Opt. A - Pure Appl. Opt. , vol.7 , pp. 296-302
    • Mazzaferri, J.1    Ledesma, S.2
  • 10
    • 33746327147 scopus 로고    scopus 로고
    • Real-time speed limit sign recognition based on locally adaptive thresholding and depth-first-search
    • J.P. Wu, and Y.C. Tsai Real-time speed limit sign recognition based on locally adaptive thresholding and depth-first-search Photogram. Eng. Remote Sens. 71 2005 405 414
    • (2005) Photogram. Eng. Remote Sens. , vol.71 , pp. 405-414
    • Wu, J.P.1    Tsai, Y.C.2
  • 11
    • 54549102444 scopus 로고    scopus 로고
    • A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging
    • M.A. Maitra, and A. Chatterjee A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging Measurement 41 2008 1124 1134
    • (2008) Measurement , vol.41 , pp. 1124-1134
    • Maitra, M.A.1    Chatterjee, A.2
  • 12
    • 0022266928 scopus 로고
    • A new method for gray-level picture thresholding using the entropy of the histogram
    • J.N. Kapur, P.K. Sahoo, and A.K.C. Wong A new method for gray-level picture thresholding using the entropy of the histogram Comput. Vision Graphics Image Process. 29 1985 273 285
    • (1985) Comput. Vision Graphics Image Process. , vol.29 , pp. 273-285
    • Kapur, J.N.1    Sahoo, P.K.2    Wong, A.K.C.3
  • 13
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • N. Otsu A threshold selection method from gray-level histograms IEEE Trans. Syst. Man Cybernet. 9 1979 62 66
    • (1979) IEEE Trans. Syst. Man Cybernet. , vol.9 , pp. 62-66
    • Otsu, N.1
  • 14
    • 0002535812 scopus 로고
    • Fuzzy entropy threshold approach to breast cancer detection
    • X. Li, Z. Zhao, and H.D. Cheng Fuzzy entropy threshold approach to breast cancer detection Inform. Sci. - Appl. 4 1995 49 56
    • (1995) Inform. Sci. - Appl. , vol.4 , pp. 49-56
    • Li, X.1    Zhao, Z.2    Cheng, H.D.3
  • 16
    • 79953661326 scopus 로고    scopus 로고
    • Modified bacterial foraging algorithm based multilevel thresholding for image segmentation
    • P.D. Sathya, and R. Kayalvizhi Modified bacterial foraging algorithm based multilevel thresholding for image segmentation Eng. Appl. Artif. Intell. 24 2011 595 615
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , pp. 595-615
    • Sathya, P.D.1    Kayalvizhi, R.2
  • 17
    • 0031206664 scopus 로고    scopus 로고
    • A fast iterative scheme for multilevel thresholding methods
    • P.Y. Yin, and L.H. Chen A fast iterative scheme for multilevel thresholding methods Signal Process. 60 1997 305 313
    • (1997) Signal Process. , vol.60 , pp. 305-313
    • Yin, P.Y.1    Chen, L.H.2
  • 18
    • 0019390125 scopus 로고
    • Entropic thresholding, a new approach
    • T. Pun Entropic thresholding, a new approach Comput. Graphics Image Process. 16 1981 210 239
    • (1981) Comput. Graphics Image Process. , vol.16 , pp. 210-239
    • Pun, T.1
  • 20
    • 0030824981 scopus 로고    scopus 로고
    • Threshold selection using Renyi's entropy
    • P. Sahoo, C. Wilkins, and J. Yeager Threshold selection using Renyi's entropy Pattern Recogn. 30 1997 71 84
    • (1997) Pattern Recogn. , vol.30 , pp. 71-84
    • Sahoo, P.1    Wilkins, C.2    Yeager, J.3
  • 21
    • 0027574929 scopus 로고
    • Minimum cross entropy thresholding
    • C.H. Li, and C.K. Lee Minimum cross entropy thresholding Pattern Recogn. 26 1993 617 625
    • (1993) Pattern Recogn. , vol.26 , pp. 617-625
    • Li, C.H.1    Lee, C.K.2
  • 22
    • 0032090603 scopus 로고    scopus 로고
    • An iterative algorithm for minimum cross entropy thresholding
    • C.H. Li, and P.K.S. Tam An iterative algorithm for minimum cross entropy thresholding Pattern Recogn. Lett. 19 1998 771 776
    • (1998) Pattern Recogn. Lett. , vol.19 , pp. 771-776
    • Li, C.H.1    Tam, P.K.S.2
  • 23
    • 0029669423 scopus 로고    scopus 로고
    • Minimum cross-entropy threshold selection
    • A.D. Brink, and N.E. Pendock Minimum cross-entropy threshold selection Pattern Recogn. 29 1996 179 188
    • (1996) Pattern Recogn. , vol.29 , pp. 179-188
    • Brink, A.D.1    Pendock, N.E.2
  • 24
    • 1842422015 scopus 로고    scopus 로고
    • Survey over image thresholding techniques and quantitative performance evaluation
    • M. Sezgin, and B.I. Sankur Survey over image thresholding techniques and quantitative performance evaluation J. Electron. Imaging 13 2004 146 168
    • (2004) J. Electron. Imaging , vol.13 , pp. 146-168
    • Sezgin, M.1    Sankur, B.I.2
  • 25
    • 79953887093 scopus 로고    scopus 로고
    • A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem
    • K. Hammouche, M. Diaf, and P. Siarry A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem Eng. Appl. Artif. Intell. 23 2010 676 688
    • (2010) Eng. Appl. Artif. Intell. , vol.23 , pp. 676-688
    • Hammouche, K.1    Diaf, M.2    Siarry, P.3
  • 26
    • 39749097306 scopus 로고    scopus 로고
    • The strongest schema learning GA and its application to multilevel thresholding
    • L. Cao, P. Bao, and Z. Shi The strongest schema learning GA and its application to multilevel thresholding Image Vision Comput. 26 2008 716 724
    • (2008) Image Vision Comput. , vol.26 , pp. 716-724
    • Cao, L.1    Bao, P.2    Shi, Z.3
  • 27
    • 0142088890 scopus 로고    scopus 로고
    • Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm
    • W.B. Tao, J.W. Tian, and J. Liu Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm Pattern Recogn. Lett. 24 2003 3069 3078
    • (2003) Pattern Recogn. Lett. , vol.24 , pp. 3069-3078
    • Tao, W.B.1    Tian, J.W.2    Liu, J.3
  • 28
    • 73749084203 scopus 로고    scopus 로고
    • Adaptive multilevel rough entropy evolutionary thresholding
    • D. Malyszko, and J. Stepaniuk Adaptive multilevel rough entropy evolutionary thresholding Inform. Sci. 180 2010 1138 1158
    • (2010) Inform. Sci. , vol.180 , pp. 1138-1158
    • Malyszko, D.1    Stepaniuk, J.2
  • 29
    • 77950187403 scopus 로고    scopus 로고
    • A novel multi-threshold segmentation approach based on differential evolution optimization
    • E. Cuevas, D. Zaldivar, and M. Prez-Cisneros A novel multi-threshold segmentation approach based on differential evolution optimization Expert Syst. Appl. 37 2010 5265 5271
    • (2010) Expert Syst. Appl. , vol.37 , pp. 5265-5271
    • Cuevas, E.1    Zaldivar, D.2    Prez-Cisneros, M.3
  • 30
    • 84555191795 scopus 로고    scopus 로고
    • A differential evolution based approach for multilevel image segmentation using minimum cross entropy thresholding
    • S. Sarkar, G.R. Patra, and S. Das A differential evolution based approach for multilevel image segmentation using minimum cross entropy thresholding Swarm Evolut. Memetic Comput. 7076 2011 51 58
    • (2011) Swarm Evolut. Memetic Comput. , vol.7076 , pp. 51-58
    • Sarkar, S.1    Patra, G.R.2    Das, S.3
  • 31
    • 84881609326 scopus 로고    scopus 로고
    • A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding
    • B. Akay A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding Appl. Soft Comput. 13 2013 3066 3091
    • (2013) Appl. Soft Comput. , vol.13 , pp. 3066-3091
    • Akay, B.1
  • 32
    • 36148968972 scopus 로고    scopus 로고
    • A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding
    • M. Maitra, and A. Chatterjee A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding Expert Syst. Appl. 34 2008 1341 1350
    • (2008) Expert Syst. Appl. , vol.34 , pp. 1341-1350
    • Maitra, M.1    Chatterjee, A.2
  • 33
    • 79959937272 scopus 로고    scopus 로고
    • Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation
    • M.H. Horng Multilevel thresholding selection based on the artificial bee colony algorithm for image segmentation Expert Syst. Appl. 38 2011 13785 13791
    • (2011) Expert Syst. Appl. , vol.38 , pp. 13785-13791
    • Horng, M.H.1
  • 34
    • 80052031412 scopus 로고    scopus 로고
    • Optimal multilevel thresholding using bacterial foraging algorithm
    • P.D. Sathya, and R. Kayalvizhi Optimal multilevel thresholding using bacterial foraging algorithm Expert Syst. Appl. 38 2011 15549 15564
    • (2011) Expert Syst. Appl. , vol.38 , pp. 15549-15564
    • Sathya, P.D.1    Kayalvizhi, R.2
  • 35
    • 84878278578 scopus 로고    scopus 로고
    • Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm
    • S. Agrawal, R. Panda, S. Bhuyan, and B.K. Panigrahi Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm Swarm Evolut. Comput. 11 2013 16 30
    • (2013) Swarm Evolut. Comput. , vol.11 , pp. 16-30
    • Agrawal, S.1    Panda, R.2    Bhuyan, S.3    Panigrahi, B.K.4
  • 36
    • 80052020906 scopus 로고    scopus 로고
    • Multilevel minimum cross entropy threshold selection based on the firefly algorithm
    • M.H. Horng, and R.J. Liou Multilevel minimum cross entropy threshold selection based on the firefly algorithm Expert Syst. Appl. 38 2011 14805 14811
    • (2011) Expert Syst. Appl. , vol.38 , pp. 14805-14811
    • Horng, M.H.1    Liou, R.J.2
  • 37
    • 77549084421 scopus 로고    scopus 로고
    • Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization
    • M.H. Horng Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization Expert Syst. Appl. 37 2010 4580 4592
    • (2010) Expert Syst. Appl. , vol.37 , pp. 4580-4592
    • Horng, M.H.1
  • 38
    • 84870250648 scopus 로고    scopus 로고
    • A comparison of nature inspired algorithms for multi-threshold image segmentation
    • V.N. Osuna-Enciso, E. Cuevas, and H. Sossa A comparison of nature inspired algorithms for multi-threshold image segmentation Expert Syst. Appl. 40 2013 1213 1219
    • (2013) Expert Syst. Appl. , vol.40 , pp. 1213-1219
    • Osuna-Enciso, V.N.1    Cuevas, E.2    Sossa, H.3
  • 40
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces
    • R. Storn, and K. Price Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces J. Global Optimiz. 11 1997 341 359
    • (1997) J. Global Optimiz. , vol.11 , pp. 341-359
    • Storn, R.1    Price, K.2
  • 41
    • 84864302644 scopus 로고    scopus 로고
    • Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm
    • P. Civicioglu Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm Comput. Geosci. 46 2012 229 247
    • (2012) Comput. Geosci. , vol.46 , pp. 229-247
    • Civicioglu, P.1
  • 42
    • 84884196222 scopus 로고    scopus 로고
    • Circular antenna array design by using evolutionary search algorithms
    • P. Civicioglu Circular antenna array design by using evolutionary search algorithms PIER-B 54 2013 265 284
    • (2013) PIER-B , vol.54 , pp. 265-284
    • Civicioglu, P.1
  • 43
    • 79960509746 scopus 로고    scopus 로고
    • FSIM: A feature similarity index for image quality assessment
    • Z. Lin, D. Zhang, and M. Xuanqin FSIM: a feature similarity index for image quality assessment IEEE Trans. Image Process. 20 2011 2378 2386
    • (2011) IEEE Trans. Image Process. , vol.20 , pp. 2378-2386
    • Lin, Z.1    Zhang, D.2    Xuanqin, M.3
  • 44
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • W. Zhou et al. Image quality assessment: from error visibility to structural similarity IEEE Trans. Image Process. 13 2004 600 612
    • (2004) IEEE Trans. Image Process. , vol.13 , pp. 600-612
    • Zhou, W.1
  • 45
    • 70349647885 scopus 로고    scopus 로고
    • A comparison of RBF neural network training algorithms for inertial sensor based terrain classification
    • T. Kurban, and E. Besdok A comparison of RBF neural network training algorithms for inertial sensor based terrain classification Sensors 9 2009 6312 6329
    • (2009) Sensors , vol.9 , pp. 6312-6329
    • Kurban, T.1    Besdok, E.2
  • 46
    • 70349860273 scopus 로고    scopus 로고
    • JADE: Adaptive differential evolution with optional external archive
    • J. Zhang, and A.C. Sanderson JADE: adaptive differential evolution with optional external archive IEEE Trans. Evolut. Comput. 13 2009 945 958
    • (2009) IEEE Trans. Evolut. Comput. , vol.13 , pp. 945-958
    • Zhang, J.1    Sanderson, A.C.2
  • 47
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm - Explosion, stability, and convergence in a multidimensional complex space
    • M. Clerc, and J. Kennedy The particle swarm - explosion, stability, and convergence in a multidimensional complex space IEEE Trans. Evolut. Comput. 6 2002 58 73
    • (2002) IEEE Trans. Evolut. Comput. , vol.6 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 48
    • 33744730797 scopus 로고    scopus 로고
    • Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
    • J.J. Liang, A.K. Qin, and P.N. Suganthan et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions IEEE Trans. Evolut. Comput. 10 2006 281 295
    • (2006) IEEE Trans. Evolut. Comput. , vol.10 , pp. 281-295
    • Liang, J.J.1    Qin, A.K.2    Suganthan, P.N.3
  • 49
    • 84903960847 scopus 로고    scopus 로고
    • accessed 09.04.14
    • M.G.H. Omran, M. Clerc, 2011. http://www.particleswarm.info/Programs.html (accessed 09.04.14).
    • (2011)
    • Omran, M.G.H.1    Clerc, M.2
  • 50
    • 35148821762 scopus 로고    scopus 로고
    • A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm
    • D. Karaboga, and B. Basturk A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm J. Global Optimiz. 39 2007 459 471
    • (2007) J. Global Optimiz. , vol.39 , pp. 459-471
    • Karaboga, D.1    Basturk, B.2
  • 51
    • 34548479029 scopus 로고    scopus 로고
    • On the performance of Artificial Bee Colony (ABC) algorithm
    • D. Karaboga, and B. Basturk On the performance of Artificial Bee Colony (ABC) algorithm Appl. Soft Comput. 8 2008 687 697
    • (2008) Appl. Soft Comput. , vol.8 , pp. 687-697
    • Karaboga, D.1    Basturk, B.2
  • 52
    • 84876476665 scopus 로고    scopus 로고
    • A conceptual comparison of the cuckoo search, particle swarm optimization, differential evolution and artificial bee colony algorithms
    • P. Civicioglu, and E. Besdok A conceptual comparison of the cuckoo search, particle swarm optimization, differential evolution and artificial bee colony algorithms Artif. Intell. Rev. 39 2013 315 346
    • (2013) Artif. Intell. Rev. , vol.39 , pp. 315-346
    • Civicioglu, P.1    Besdok, E.2
  • 54
    • 84903960838 scopus 로고    scopus 로고
    • accessed 09.04.14
    • X.S. Yang, 2010. http://www.mathworks.com/matlabcentral/fileexchange/ 29809-cuckoo-search-cs-algorithm (accessed 09.04.14).
    • (2010)
    • Yang, X.S.1
  • 55
    • 84903960839 scopus 로고    scopus 로고
    • accessed 09.04.14
    • R. Storn, K. Price, 1997. http://www1.icsi.berkeley.edu/storn/code.html (accessed 09.04.14).
    • (1997)
    • Storn, R.1    Price, K.2
  • 56
    • 84903960840 scopus 로고    scopus 로고
    • accessed 09.04.14
    • J. Zhang, A.C. Sanderson, 2009. http://dces.essex.ac.uk/staff/zhang/code/ codealgorithm/JADE/ (accessed 09.04.14).
    • (2009)
    • Zhang, J.1    Sanderson, A.C.2
  • 57
    • 84903960841 scopus 로고    scopus 로고
    • accessed 09.04.2014
    • D. Karaboga, B. Basturk, 2007. http://mf.erciyes.edu.tr/abc/software.htm (accessed 09.04.2014).
    • (2007)
    • Karaboga, D.1    Basturk, B.2
  • 58
    • 84903960835 scopus 로고    scopus 로고
    • accessed 09.04.14
    • P. Civicioglu, 2012. http://www.pinarcivicioglu.com/ds.html (accessed 09.04.14).
    • (2012)
    • Civicioglu, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.