-
2
-
-
0010964258
-
On the structure of the Mandelbar set
-
W.D. Crowe, R. Hasson, and P.J. Rippon et al. On the structure of the Mandelbar set Nonlinearity 2 4 1989 541 553
-
(1989)
Nonlinearity
, vol.2
, Issue.4
, pp. 541-553
-
-
Crowe, W.D.1
Hasson, R.2
Rippon, P.J.3
-
3
-
-
33845589929
-
Global analysis of the Mandelbrot set and the general Mandelbrot set
-
(in Chinese with English Abstract)
-
Y.N. Huang Global analysis of the Mandelbrot set and the general Mandelbrot set Sci. China Ser. A 8 1991 823 830 (in Chinese with English Abstract)
-
(1991)
Sci. China Ser. A
, vol.8
, pp. 823-830
-
-
Huang, Y.N.1
-
4
-
-
0026455526
-
Fractal images from zα+c in the complex z-plane
-
U.G. Gujar, V.C. Bhavsar, and N. Vangala Fractal images from zα+c in the complex z-plane Comput. Graphics 16 1 1992 45 49
-
(1992)
Comput. Graphics
, vol.16
, Issue.1
, pp. 45-49
-
-
Gujar, U.G.1
Bhavsar, V.C.2
Vangala, N.3
-
5
-
-
0027255614
-
Analysis of z-plane fractals images from zα+c for α < 0
-
S.V. Dhurandhar, V.C. Bhavsar, and U.G. Gujar Analysis of z-plane fractals images from zα+c for α < 0 Comput. Graphics 17 1 1993 89 94
-
(1993)
Comput. Graphics
, vol.17
, Issue.1
, pp. 89-94
-
-
Dhurandhar, S.V.1
Bhavsar, V.C.2
Gujar, U.G.3
-
7
-
-
51649143919
-
Experimental results on quadratic maps using generalized complex numbers
-
G. Giuli, and F. Pisacane Experimental results on quadratic maps using generalized complex numbers Il Nuovo Cimento D 16 8 1994 1311 1324
-
(1994)
Il Nuovo Cimento D
, vol.16
, Issue.8
, pp. 1311-1324
-
-
Giuli, G.1
Pisacane, F.2
-
8
-
-
34247213823
-
The divisor periodic point of escape-time N of the Mandelbrot set
-
X. Wang, and X. Zhang The divisor periodic point of escape-time N of the Mandelbrot set Appl. Math. Comput. 187 2007 1552 1556
-
(2007)
Appl. Math. Comput.
, vol.187
, pp. 1552-1556
-
-
Wang, X.1
Zhang, X.2
-
9
-
-
44949158877
-
The radius of the n-Mandelbrot set
-
N.H. Rhee, and N.C. Rhee The radius of the n-Mandelbrot set Appl. Math. Lett. 21 2008 877 879
-
(2008)
Appl. Math. Lett.
, vol.21
, pp. 877-879
-
-
Rhee, N.H.1
Rhee, N.C.2
-
10
-
-
33748568821
-
On periodic and chaotic regions in the Mandelbrot set
-
G. Pastor, M. Romera, and G. Álvarez et al. On periodic and chaotic regions in the Mandelbrot set Chaos Soliton Fractals 32 2007 15 25
-
(2007)
Chaos Soliton Fractals
, vol.32
, pp. 15-25
-
-
Pastor, G.1
Romera, M.2
Álvarez, G.3
-
11
-
-
43949101331
-
Visualization of chaotic dynamical systems based on mandelbrot set methodology
-
J. Cheng, J. Tan, and C. Gan Visualization of chaotic dynamical systems based on mandelbrot set methodology Fractals 16 1 2008 89 97
-
(2008)
Fractals
, vol.16
, Issue.1
, pp. 89-97
-
-
Cheng, J.1
Tan, J.2
Gan, C.3
-
12
-
-
67649871421
-
Generation of fractals from complex logistic map
-
M. Rani, and R. Agarwal Generation of fractals from complex logistic map Chaos Solitons Fractals 42 1 2009 447 452
-
(2009)
Chaos Solitons Fractals
, vol.42
, Issue.1
, pp. 447-452
-
-
Rani, M.1
Agarwal, R.2
-
13
-
-
84879092875
-
On numerical approximations of the area of the generalized Mandelbrot sets
-
I. Andreadis, and T.E. Karakasidis On numerical approximations of the area of the generalized Mandelbrot sets Appl. Math. Comput. 219 23 2013 10974 10982
-
(2013)
Appl. Math. Comput.
, vol.219
, Issue.23
, pp. 10974-10982
-
-
Andreadis, I.1
Karakasidis, T.E.2
-
14
-
-
84881270393
-
Fractal property of generalized M-set with rational number exponent
-
S. Liu, X. Cheng, and C. Lan et al. Fractal property of generalized M-set with rational number exponent Appl. Math. Comput. 220 2013 668 675
-
(2013)
Appl. Math. Comput.
, vol.220
, pp. 668-675
-
-
Liu, S.1
Cheng, X.2
Lan, C.3
-
15
-
-
84872409719
-
Geometric limits of mandelbrot and Julia sets under degree growth
-
10.1142/S0218127412503014
-
S.H. Boyd, and M.J. Schulz Geometric limits of mandelbrot and Julia sets under degree growth Int. J. Bifurcat. Chaos 22 12 2012 78 96 10.1142/S0218127412503014
-
(2012)
Int. J. Bifurcat. Chaos
, vol.22
, Issue.12
, pp. 78-96
-
-
Boyd, S.H.1
Schulz, M.J.2
-
17
-
-
84879701127
-
Graphical exploration of the connectivity sets of alternated Julia sets
-
M.F. Danca, P. Bourke, and M. Romera Graphical exploration of the connectivity sets of alternated Julia sets Nonlinear Dyn. 73 1-2 2013 1155 1163
-
(2013)
Nonlinear Dyn.
, vol.73
, Issue.12
, pp. 1155-1163
-
-
Danca, M.F.1
Bourke, P.2
Romera, M.3
-
18
-
-
80051659729
-
Improvement of escape time algorithm by no-escape-point
-
S. Liu, X. Che, and Z. Wang Improvement of escape time algorithm by no-escape-point J. Comput. 6 8 2011 1648 1653
-
(2011)
J. Comput.
, vol.6
, Issue.8
, pp. 1648-1653
-
-
Liu, S.1
Che, X.2
Wang, Z.3
-
20
-
-
84904014914
-
Distributional escape time algorithm based on generalized fractal sets in cloud environment
-
in press
-
M. Liu, S. Liu, W. Fu et al., Distributional escape time algorithm based on generalized fractal sets in cloud environment, Chin. J. Electron., in press.
-
Chin. J. Electron.
-
-
Liu, M.1
Liu, S.2
Fu Et Al., W.3
-
21
-
-
84885445329
-
Distributional Fractal Creating Algorithm in Parallel Environment
-
10.1155/2013/281707
-
S. Liu, W. Fu, and H. Deng et al. Distributional Fractal Creating Algorithm in Parallel Environment Int. J. Distrib. Sens. Netw. 2013 10.1155/2013/281707
-
(2013)
Int. J. Distrib. Sens. Netw.
-
-
Liu, S.1
Fu, W.2
Deng, H.3
-
22
-
-
84901763720
-
Distributed cooperative algorithm for k-M set with negative integer k by fractal symmetrical property
-
10.1155/2014/398583
-
G. Yang, and S. Liu Distributed cooperative algorithm for k-M set with negative integer k by fractal symmetrical property Int. J. Distrib. Sens. Netw. 2014 10.1155/2014/398583
-
(2014)
Int. J. Distrib. Sens. Netw.
-
-
Yang, G.1
Liu, S.2
|