메뉴 건너뛰기




Volumn 219, Issue 23, 2013, Pages 10974-10982

On numerical approximations of the area of the generalized Mandelbrot sets

Author keywords

Area; Finite escape algorithm; Generalized; Lattice points; Mandelbrot set

Indexed keywords

AREA; ASYMPTOTIC BEHAVIORS; GENERALIZED; LATTICE POINTS; LATTICE RESOLUTION; MANDELBROT SET; NUMBER OF ITERATIONS; NUMERICAL APPROXIMATIONS;

EID: 84879092875     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2013.04.052     Document Type: Article
Times cited : (8)

References (21)
  • 1
    • 0000877359 scopus 로고    scopus 로고
    • Physical meaning for Mandelbrot and Julia sets
    • C. Beck Physical meaning for Mandelbrot and Julia sets Physica D 125 1999 171 182
    • (1999) Physica D , vol.125 , pp. 171-182
    • Beck, C.1
  • 3
    • 33645880461 scopus 로고    scopus 로고
    • Research on fractal structures of generalized M-J sets utilized Lypaunov exponents and periodic scanning techniques
    • X. Wang, and P. Chang Research on fractal structures of generalized M-J sets utilized Lypaunov exponents and periodic scanning techniques Applied Mathematics and Computation 175 2 2006 1007 1025
    • (2006) Applied Mathematics and Computation , vol.175 , Issue.2 , pp. 1007-1025
    • Wang, X.1    Chang, P.2
  • 4
    • 84872409719 scopus 로고    scopus 로고
    • Geometric limits of Mandelbrot and Julia sets under degree growth
    • S.H. Boyd, and M.J. Schulz Geometric limits of Mandelbrot and Julia sets under degree growth International Journal of Bifurcation and Chaos 22 2012 1250301 1250322
    • (2012) International Journal of Bifurcation and Chaos , vol.22 , pp. 1250301-1250322
    • Boyd, S.H.1    Schulz, M.J.2
  • 6
    • 84879078095 scopus 로고
    • What is the Area of the Mandelbrot set
    • (ed. C. Pickover)
    • D. Rabenhorst, What is the Area of the Mandelbrot set, in: Journal of Chaos and Graphics (ed. C. Pickover) 2 (1987) 26.
    • (1987) Journal of Chaos and Graphics , vol.2 , pp. 26
    • Rabenhorst, D.1
  • 9
    • 84879120817 scopus 로고
    • Bounding the Area of the Mandelbrot set
    • [accessed 29 February 2012]
    • Fisher, J. Hill, Bounding the Area of the Mandelbrot set, submitted to Numeriche Mathematik, 1993. Available online: [accessed 29 February 2012].
    • (1993) Numeriche Mathematik
    • Fisher J. Hill1
  • 10
    • 84879100546 scopus 로고    scopus 로고
    • Fractals and the Grand Internet Parallel Processing Project
    • St. Martin's Press New York (Chapter 15)
    • J.R. Hill Fractals and the Grand Internet Parallel Processing Project Fractal Horizons: The Future Use of Fractals 1996 St. Martin's Press New York 299 323 (Chapter 15)
    • (1996) Fractal horizons: The future use of fractals , pp. 299-323
    • Hill, J.R.1
  • 12
    • 84879117766 scopus 로고    scopus 로고
    • Double sequences and double series
    • study 16
    • E.D. Habil Double sequences and double series Islamaic University Journal 14 1 2005 study 16
    • (2005) Islamaic University Journal , vol.14 , Issue.1
    • Habil, E.D.1
  • 14
    • 84879123566 scopus 로고    scopus 로고
    • The Original Lab software web-page
    • The Original Lab software web-page: .
  • 18
    • 34247213823 scopus 로고    scopus 로고
    • The divisor periodic point of escape-time N of the Mandelbrot set
    • X. Wang, and X. Zhang The divisor periodic point of escape-time N of the Mandelbrot set Applied Mathematics and Computation 187 2 2007 1552 1556
    • (2007) Applied Mathematics and Computation , vol.187 , Issue.2 , pp. 1552-1556
    • Wang, X.1    Zhang, X.2
  • 19
    • 34248348808 scopus 로고    scopus 로고
    • Additive perturbed generalized Mandelbrot-Julia sets
    • X. Wang, P. Chang, and N. Gu Additive perturbed generalized Mandelbrot-Julia sets Applied Mathematics and Computation 189 1 2007 754 765
    • (2007) Applied Mathematics and Computation , vol.189 , Issue.1 , pp. 754-765
    • Wang, X.1    Chang, P.2    Gu, N.3
  • 21
    • 61649120074 scopus 로고    scopus 로고
    • The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative
    • X. Wang, R. Jia, and Z. Zhang The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative Applied Mathematics and Computation 210 1 2009 107 118
    • (2009) Applied Mathematics and Computation , vol.210 , Issue.1 , pp. 107-118
    • Wang, X.1    Jia, R.2    Zhang, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.