-
1
-
-
0003851729
-
-
U.S. Government Printing Office,Washington, DC
-
Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office,Washington, DC.
-
(1964)
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.
-
-
Abramowitz, M.1
Stegun, I.A.2
-
2
-
-
0034396569
-
The bolthausen-sznitman coalescent and the genealogy of continuousstate branching processes
-
Bertoin, J. and Le Gall, J.-F. (2000). The Bolthausen-Sznitman coalescent and the genealogy of continuousstate branching processes. Prob. Theory Relat. Fields 117, 249-266.
-
(2000)
Prob. Theory Relat. Fields
, vol.117
, pp. 249-266
-
-
Bertoin, J.1
Le Gall, J.-F.2
-
3
-
-
3042526534
-
Two coalescents derived from the ranges of stable subordinators
-
Bertoin, J. and Pitman, J. (2000). Two coalescents derived from the ranges of stable subordinators. Electron. J. Prob. 5, 17pp.
-
(2000)
Electron. J. Prob.
, vol.5
, pp. 17
-
-
Bertoin, J.1
Pitman, J.2
-
5
-
-
15944407665
-
Alpha-stable branching and beta-coalescents
-
9
-
Birkner, M. et al. (2005). Alpha-stable branching and beta-coalescents. Electron. J. Prob. 10, 303-325. (Pubitemid 40447595)
-
(2005)
Electronic Journal of Probability
, vol.10
, pp. 303-325
-
-
Birkner, M.1
Blath, J.2
Capaldo, M.3
Etheridge, A.4
Mohle, M.5
Schweinsberg, J.6
Wakolbinger, A.7
-
6
-
-
0010117449
-
On ruelle's probability cascades and an abstract cavity method
-
Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle's probability cascades and an abstract cavity method. Commun. Math. Phys. 197, 247-276.
-
(1998)
Commun. Math. Phys.
, vol.197
, pp. 247-276
-
-
Bolthausen, E.1
Sznitman, A.-S.2
-
7
-
-
52949134472
-
Asymptotic results on the length of coalescent trees
-
Delmas, J.-F., Dhersin, J.-S. and Siri-Jegousse, A. (2008). Asymptotic results on the length of coalescent trees. Ann. Appl. Prob. 18, 997-1025.
-
(2008)
Ann. Appl. Prob.
, vol.18
, pp. 997-1025
-
-
Delmas, J.-F.1
Dhersin, J.-S.2
Siri-Jegousse, A.3
-
8
-
-
33847619112
-
Asymptotic results concerning the total branch length of the Bolthausen-Sznitman coalescent
-
DOI 10.1016/j.spa.2007.01.011, PII S030441490700018X
-
Drmota, M., Iksanov, A., Moehle, M. and Roesler, U. (2007). Asymptotic results concerning the total branch length of the Bolthausen-Sznitman coalescent. Stoch. Process. Appl. 117, 1404-1421. (Pubitemid 47320966)
-
(2007)
Stochastic Processes and their Applications
, vol.117
, Issue.10
, pp. 1404-1421
-
-
Drmota, M.1
Iksanov, A.2
Moehle, M.3
Roesler, U.4
-
9
-
-
67649103832
-
A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree
-
Drmota, M., Iksanov, A., Moehle, M. and Roesler, U. (2009). A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree. Random Structures Algorithms 34, 319-336.
-
(2009)
Random Structures Algorithms
, vol.34
, pp. 319-336
-
-
Drmota, M.1
Iksanov, A.2
Moehle, M.3
Roesler, U.4
-
10
-
-
84968508674
-
Fluctuation theory of recurrent events
-
Feller, W. (1949). Fluctuation theory of recurrent events. Trans. Amer. Math. Soc. 67, 98-119.
-
(1949)
Trans. Amer. Math. Soc.
, vol.67
, pp. 98-119
-
-
Feller, W.1
-
11
-
-
77949307317
-
On the time back to the most recent common ancestor and the external branch length of the bolthausen-sznitman coalescent
-
Freund, F. and Möhle, M. (2009). On the time back to the most recent common ancestor and the external branch length of the Bolthausen-Sznitman coalescent. Markov Process. Relat. Fields 15, 387-416.
-
(2009)
Markov Process. Relat. Fields
, vol.15
, pp. 387-416
-
-
Freund, F.1
Möhle, M.2
-
12
-
-
0000797976
-
A class ofwasserstein metrics for probability distributions
-
Givens, C. R. and Shortt, R.M. (1984).A class ofWasserstein metrics for probability distributions. Michigan Math. J. 31, 231-240.
-
(1984)
Michigan Math. J.
, vol.31
, pp. 231-240
-
-
Givens, C.R.1
Shortt, R.M.2
-
13
-
-
37449014727
-
On the number of collisions in-coalescents
-
Gnedin, A. and Yakubovich, Y. (2007). On the number of collisions in-coalescents. Electron. J. Prob. 12, 1547-1567.
-
(2007)
Electron. J. Prob.
, vol.12
, pp. 1547-1567
-
-
Gnedin, A.1
Yakubovich, Y.2
-
14
-
-
84855294897
-
On-coalescents with dust component
-
Gnedin, A., Iksanov, A. and Marynych, A. (2011). On-coalescents with dust component. J. Appl. Prob. 48, 1133-1151.
-
(2011)
J. Appl. Prob.
, vol.48
, pp. 1133-1151
-
-
Gnedin, A.1
Iksanov, A.2
Marynych, A.3
-
15
-
-
58449107332
-
On asymptotics of exchangeable coalescents with multiple collisions
-
Gnedin, A., Iksanov, A. and Möhle, M. (2008). On asymptotics of exchangeable coalescents with multiple collisions. J. Appl. Prob. 45, 1186-1195.
-
(2008)
J. Appl. Prob.
, vol.45
, pp. 1186-1195
-
-
Gnedin, A.1
Iksanov, A.2
Möhle, M.3
-
16
-
-
84903795512
-
-
Preprint. Available at
-
Gnedin, A., Iksanov, A., Marynych, A. and Moehle, M. (2012). On asymptotics of the beta-coalescents. Preprint. Available at http://uk.arxiv.org/ abs/1203.3110.
-
(2012)
On Asymptotics of the Beta-Coalescents.
-
-
Gnedin, A.1
Iksanov, A.2
Marynych, A.3
Moehle, M.4
-
17
-
-
23244443030
-
Random recursive trees and the bolthausen-sznitman coalescent
-
Goldschmidt, C. and Martin, J. B. (2005). Random recursive trees and the Bolthausen-Sznitman coalescent. Electron. J. Prob. 10, 718-745.
-
(2005)
Electron. J. Prob.
, vol.10
, pp. 718-745
-
-
Goldschmidt, C.1
Martin, J.B.2
-
18
-
-
81455142036
-
Self-similar scaling limits of non-increasing markov chains
-
Haas, B. and Miermont, G. (2011). Self-similar scaling limits of non-increasing Markov chains. Bernoulli 17, 1217-1247.
-
(2011)
Bernoulli
, vol.17
, pp. 1217-1247
-
-
Haas, B.1
Miermont, G.2
-
19
-
-
84880575996
-
On the extended moran model and its relation to coalescents with multiple collisions
-
Huillet, T. and Möhle, M. (2013). On the extended Moran model and its relation to coalescents with multiple collisions. Theoret. Pop. Biol. 87, 5-14.
-
(2013)
Theoret. Pop. Biol.
, vol.87
, pp. 5-14
-
-
Huillet, T.1
Möhle, M.2
-
20
-
-
33847621768
-
A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree
-
Iksanov, A. and Möhle, M. (2007). A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree. Electron. Commun. Prob. 12, 28-35.
-
(2007)
Electron. Commun. Prob.
, vol.12
, pp. 28-35
-
-
Iksanov, A.1
Möhle, M.2
-
21
-
-
44649151115
-
On the number of jumps of random walks with a barrier
-
DOI 10.1239/aap/1208358893
-
Iksanov, A. and Möhle, M. (2008). On the number of jumps of random walks with a barrier. Adv. Appl. Prob. 40, 206-228. (Pubitemid 351772465)
-
(2008)
Advances in Applied Probability
, vol.40
, Issue.1
, pp. 206-228
-
-
Iksanov, A.1
Mohle, M.2
-
22
-
-
72549092905
-
On the number of collisions in beta(2, b)-coalescents
-
Iksanov, A., Marynych, A. and Möhle, M. (2009). On the number of collisions in beta(2, b)-coalescents. Bernoulli 15, 829-845.
-
(2009)
Bernoulli
, vol.15
, pp. 829-845
-
-
Iksanov, A.1
Marynych, A.2
Möhle, M.3
-
23
-
-
33845706795
-
Central limit theorem and convergence to stable laws in Mallows distance
-
DOI 10.3150/bj/1130077596
-
Johnson, O. and Samworth, R. (2005). Central limit theorem and convergence to stable laws in Mallows distance. Bernoulli 11, 829-845. (Pubitemid 44966971)
-
(2005)
Bernoulli
, vol.11
, Issue.5
, pp. 829-845
-
-
Johnson, O.1
Samworth, R.2
-
24
-
-
84873395699
-
The asymptotic distribution of the length of beta-coalescent trees
-
Kersting, G. (2012). The asymptotic distribution of the length of beta-coalescent trees. Ann. Appl. Prob. 22, 2086-2107.
-
(2012)
Ann. Appl. Prob.
, vol.22
, pp. 2086-2107
-
-
Kersting, G.1
-
26
-
-
33749577624
-
On the number of segregating sites for populations with large family sizes
-
DOI 10.1239/aap/1158685000
-
Möhle, M. (2006). On the number of segregating sites for populations with large family sizes. Adv. Appl. Prob. 38, 750-767. (Pubitemid 44530192)
-
(2006)
Advances in Applied Probability
, vol.38
, Issue.3
, pp. 750-767
-
-
Mohle, M.1
-
27
-
-
77956395446
-
Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter poisson-dirichlet coalescent
-
Möhle, M. (2010). Asymptotic results for coalescent processes without proper frequencies and applications to the two-parameter Poisson-Dirichlet coalescent. Stoch. Process. Appl. 120, 2159-2173.
-
(2010)
Stoch. Process. Appl.
, vol.120
, pp. 2159-2173
-
-
Möhle, M.1
-
28
-
-
23244452843
-
Destruction of recursive trees
-
Birkhäuser, Basel
-
Panholzer, A. (2004). Destruction of recursive trees. In Mathematics and Computer Science, Vol. III, Birkhäuser, Basel, pp. 267-280.
-
(2004)
Mathematics and Computer Science
, vol.3
, pp. 267-280
-
-
Panholzer, A.1
-
29
-
-
0033233681
-
Coalescents with multiple collisions
-
Pitman, J. (1999). Coalescents with multiple collisions. Ann. Prob. 27, 1870-1902.
-
(1999)
Ann. Prob.
, vol.27
, pp. 1870-1902
-
-
Pitman, J.1
-
30
-
-
0033233843
-
The general coalescent with asynchronous mergers of ancestral lines
-
Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Prob. 36, 1116-1125.
-
(1999)
J. Appl. Prob.
, vol.36
, pp. 1116-1125
-
-
Sagitov, S.1
-
31
-
-
84989951245
-
A necessary and sufficient condition for the-coalescent to come down from infinity
-
Schweinsberg, J. (2000).A necessary and sufficient condition for the-coalescent to come down from infinity. Electron. Commun. Prob. 5, 1-11.
-
(2000)
Electron. Commun. Prob.
, vol.5
, pp. 1-11
-
-
Schweinsberg, J.1
-
32
-
-
27144461017
-
Ancestral inference in population genetics
-
(Lecture Notes Math. 1837), Springer, Berlin
-
Tavaré, S. (2004). Ancestral inference in population genetics. In Lectures on Probability Theory and Statistics (Lecture Notes Math. 1837), Springer, Berlin, pp. 1-188.
-
(2004)
Lectures on Probability Theory and Statistics
, pp. 1-188
-
-
Tavaré, S.1
|