-
2
-
-
37449025213
-
Beta-coalescents and continuous stable random trees
-
arXiv:math.PR/0602113
-
J. Berestycki, N. Berestycki, J. Schweinsberg. Beta-coalescents and continuous stable random trees. Ann. Probab. 35 (2007), 1835-1887; arXiv:math.PR/0602113.
-
(2007)
Ann. Probab.
, vol.35
, pp. 1835-1887
-
-
Berestycki, J.1
Berestycki, N.2
Schweinsberg, J.3
-
3
-
-
33846297375
-
Stochastic flows associated to coalescent processes III: Limit theorems
-
(electronic); arXiv:math.PR/0506092
-
J. Bertoin, J.-F. Le Gall. Stochastic flows associated to coalescent processes III: Limit theorems. Illinois J. Math. 50 (2006), no. 1-4, 147-181 (electronic); arXiv:math.PR/0506092.
-
(2006)
Illinois J. Math
, vol.50
, Issue.1-4
, pp. 147-181
-
-
Bertoin, J.1
Le Gall, J.-F.2
-
5
-
-
15944407665
-
Alpha-stable branching and beta-coalescents
-
(electronic)
-
M. Birkner, J. Blath, M. Capaldo, A. Etheridge, M. Mohle, J. Schweinsberg, A. Wakol-binger. Alpha-stable branching and beta-coalescents, Elec. J. Prob. 10 (2005), 303-325 (electronic).
-
(2005)
Elec. J. Prob.
, vol.10
, pp. 303-325
-
-
Birkner, M.1
Blath, J.2
Capaldo, M.3
Etheridge, A.4
Mohle, M.5
Schweinsberg, J.6
Wakol-Binger, A.7
-
6
-
-
0010117449
-
On Ruelle's probability cascades and an abstract cavity method
-
E. Bolthausen, A.-S. Sznitman. On Ruelle's probability cascades and an abstract cavity method. Comm. Math. Phys. 197 (1998), 247-276.
-
(1998)
Comm. Math. Phys.
, vol.197
, pp. 247-276
-
-
Bolthausen, E.1
Sznitman, A.-S.2
-
8
-
-
44649182528
-
A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree
-
M. Drmota, A. Iksanov, M. Moehle, U. Roesler. A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree. Submitted to Random Struct. Algorithms.
-
Random Struct. Algorithms.
-
-
Drmota, M.1
Iksanov, A.2
Moehle, M.3
Roesler, U.4
-
9
-
-
33847619112
-
Asymptotic results about the total branch length of the Bolthausen-Sznitman coalescent
-
M. Drmota, A. Iksanov, M. Moehle, U. Roesler. Asymptotic results about the total branch length of the Bolthausen-Sznitman coalescent. Stoch. Proc. Appl. 117 (2007), no. 10, 1404-1421.
-
(2007)
Stoch. Proc. Appl
, vol.117
, Issue.10
, pp. 1404-1421
-
-
Drmota, M.1
Iksanov, A.2
Moehle, M.3
Roesler, U.4
-
10
-
-
37449016826
-
Exchangeable partitions derived from Markovian coalescents
-
R. Dong, A. Gnedin and J. Pitman. Exchangeable partitions derived from Markovian coalescents. Ann. Appl. Prob., 17 (2007), no. 4, 1172-1201.
-
(2007)
Ann. Appl. Prob.
, vol.17
, Issue.4
, pp. 1172-1201
-
-
Dong, R.1
Gnedin, A.2
Pitman, J.3
-
11
-
-
84968508674
-
Fluctuation theory of recurrent events
-
W. Feller. Fluctuation theory of recurrent events. Trans. Amer. Math. Soc. 67 (1949), 98-119.
-
(1949)
Trans. Amer. Math. Soc
, vol.67
, pp. 98-119
-
-
Feller, W.1
-
14
-
-
33846836960
-
On sampling distributions for coalescent processes with simultaneous multiple collisions
-
M. Mohle. On sampling distributions for coalescent processes with simultaneous multiple collisions, Bernoulli 12 (2006), 35-53.
-
(2006)
Bernoulli
, vol.12
, pp. 35-53
-
-
Mohle, M.1
-
15
-
-
33749577624
-
On the number of segregating sites for populations with large family sizes
-
M. Mohle. On the number of segregating sites for populations with large family sizes. Adv. Appl. Prob. 38 (2006), 750-767.
-
(2006)
Adv. Appl. Prob
, vol.38
, pp. 750-767
-
-
Mohle, M.1
-
16
-
-
0033233681
-
Coalescents with multiple collisions
-
J. Pitman. Coalescents with multiple collisions. Ann. Probab. 27 (1999), 1870-1902.
-
(1999)
Ann. Probab
, vol.27
, pp. 1870-1902
-
-
Pitman, J.1
-
17
-
-
0033233843
-
The general coalescent with asynchronous mergers of ancestral lines
-
S. Sagitov. The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Prob. 36 (1999), 1116-1125.
-
(1999)
J. Appl. Prob
, vol.36
, pp. 1116-1125
-
-
Sagitov, S.1
-
18
-
-
0003623809
-
Stable non-Gaussian random processes. Stochastic models with infinite variance
-
Chapman & Hall, New York
-
G. Samorodnitsky, M. S. Taqqu. Stable non-Gaussian random processes. Stochastic models with infinite variance. Stochastic Modeling. Chapman & Hall, New York, 1994.
-
(1994)
Stochastic Modeling
-
-
Samorodnitsky, G.1
Taqqu, M.S.2
-
19
-
-
84989951245
-
A necessary and sufficient condition for the A-coalescent to come down from infinity
-
J. Schweinsberg. A necessary and sufficient condition for the A-coalescent to come down from infinity. Elec. Comm. Probab. 5 (2000), 1-11.
-
(2000)
Elec. Comm. Probab
, vol.5
, pp. 1-11
-
-
Schweinsberg, J.1
-
20
-
-
0004143110
-
Stochastic-process limits. An introduction to stochastic-process limits and their application to queues
-
Springer-Verlag, New York
-
W. Whitt. Stochastic-process limits. An introduction to stochastic-process limits and their application to queues. Springer Series in Operations Research, Springer-Verlag, New York (2002).
-
(2002)
Springer Series in Operations Research
-
-
Whitt, W.1
-
21
-
-
0003588120
-
-
Providence, Rhode Island: American Mathematical Society, Providence, RI
-
V. M. Zolotarev. One-dimensional stable distributions. Providence, Rhode Island: American Mathematical Society, Providence, RI, 1986.
-
(1986)
One-Dimensional Stable Distributions.
-
-
Zolotarev, V.M.1
|