-
1
-
-
0000044071
-
Stopping times and tightness
-
Aldous, D. (1978). Stopping times and tightness. Ann. Prob. 6, 335-340.
-
(1978)
Ann. Prob.
, vol.6
, pp. 335-340
-
-
Aldous, D.1
-
2
-
-
0034572046
-
Stochastic epidemics in dynamic populations: Quasi-stationarity and extinction
-
Andersson, H. and Britton, T. (2000). Stochastic epidemics in dynamic populations: quasi-stationarity and extinction. J. Math. Biol. 41, 559-580.
-
(2000)
J. Math. Biol.
, vol.41
, pp. 559-580
-
-
Andersson, H.1
Britton, T.2
-
3
-
-
0032268351
-
A threshold limit theorem for the stochastic logistic epidemic
-
Andersson, H. and Djehiche, B. (1998).A threshold limit theorem for the stochastic logistic epidemic. J. Appl. Prob. 35, 662-670. (Pubitemid 128356773)
-
(1998)
Journal of Applied Probability
, vol.35
, Issue.3
, pp. 662-670
-
-
Andersson, H.1
Djehiche, B.2
-
4
-
-
77957149702
-
Global stability of equilibria for a metapopulation s-i-s model
-
Springer, Berlin
-
Arrigoni, F. and Pugliese, A. (2007). Global stability of equilibria for a metapopulation S-I-S model. In Math Everywhere, Springer, Berlin, pp. 229-240.
-
(2007)
Math Everywhere
, pp. 229-240
-
-
Arrigoni, F.1
Pugliese, A.2
-
5
-
-
0032896314
-
Stochastic and deterministic models for SIS epidemics among a population partitioned into households
-
DOI 10.1016/S0025-5564(98)10060-3, PII S0025556498100603
-
Ball, F. (1999). Stochastic and deterministic models for SIS epidemics among a population partitioned into households. Math. Biosci. 156, 41-67. (Pubitemid 29157685)
-
(1999)
Mathematical Biosciences
, vol.156
, Issue.1-2
, pp. 41-67
-
-
Ball, F.1
-
6
-
-
0001998990
-
Strong approximations for epidemic models
-
Ball, F. and Donnelly, P. (1995). Strong approximations for epidemic models. Stoch. Process. Appl. 55, 1-21.
-
(1995)
Stoch. Process. Appl.
, vol.55
, pp. 1-21
-
-
Ball, F.1
Donnelly, P.2
-
8
-
-
77957160711
-
The time to extinction for a stochastic sis-household-epidemic model
-
Britton, T. and Neal, P. (2010). The time to extinction for a stochastic SIS-household-epidemic model. J. Math. Biol. 61, 763-779.
-
(2010)
J. Math. Biol.
, vol.61
, pp. 763-779
-
-
Britton, T.1
Neal, P.2
-
9
-
-
84903774687
-
Approximating quasistationary distributions of birth-death processes
-
Clancy, D. (2012). Approximating quasistationary distributions of birth-death processes. J. Appl. Prob. 49, 1036-1051.
-
(2012)
J. Appl. Prob.
, vol.49
, pp. 1036-1051
-
-
Clancy, D.1
-
10
-
-
79960292204
-
Approximating the quasistationary distribution of the sis model for endemic infection
-
Clancy, D. and Mendy, S. T. (2011). Approximating the quasistationary distribution of the SIS model for endemic infection. Methodol. Comput. Appl. Prob. 13, 603-618.
-
(2011)
Methodol. Comput. Appl. Prob.
, vol.13
, pp. 603-618
-
-
Clancy, D.1
Mendy, S.T.2
-
11
-
-
0242508316
-
A note on quasi-stationary distributions of birth-death processes and the SIS logistic epidemic
-
DOI 10.1239/jap/1059060909
-
Clancy, D. and Pollett, P. K. (2003). A note on quasistationary distributions of birth-death processes and the SIS logistic epidemic. J. Appl. Prob. 40, 821-825. (Pubitemid 37374299)
-
(2003)
Journal of Applied Probability
, vol.40
, Issue.3
, pp. 821-825
-
-
Clancy, D.1
Pollett, P.K.2
-
12
-
-
2542426854
-
SIS epidemics with household structure: The self-consistent field method
-
DOI 10.1016/j.mbs.2004.02.006, PII S0025556404000756
-
Ghoshal, G., Sander, L. M. and Sokolov, I. M. (2004). SIS epidemics with household structure: the self-consistent field method. Math. Biosci. 190, 71-85. (Pubitemid 38692824)
-
(2004)
Mathematical Biosciences
, vol.190
, Issue.1
, pp. 71-85
-
-
Ghoshal, G.1
Sander, L.M.2
Sokolov, I.M.3
-
13
-
-
0000311552
-
On the extinction of the s-i-s stochastic logistic epidemic
-
Kryscio, R. and Lefèvre, C. (1989). On the extinction of the S-I-S stochastic logistic epidemic. J. Appl. Prob. 26, 685-694.
-
(1989)
J. Appl. Prob.
, vol.26
, pp. 685-694
-
-
Kryscio, R.1
Lefèvre, C.2
-
14
-
-
0001249058
-
Limit theorems for sequences of jump markov processes approximating ordinary differential processes
-
Kurtz, T. G. (1971). Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Prob. 8, 344-356.
-
(1971)
J. Appl. Prob.
, vol.8
, pp. 344-356
-
-
Kurtz, T.G.1
-
15
-
-
0001407755
-
Weak convergence of probability measures and random functions in function space on d(0,∞
-
Lindvall, T. (1973).Weak convergence of probability measures and random functions in function space on D(0,∞). J. Appl. Prob. 10, 109-121.
-
(1973)
J. Appl. Prob.
, vol.10
, pp. 109-121
-
-
Lindvall, T.1
-
16
-
-
0000635179
-
The quasi-stationary distribution of the closed endemic sis model
-
Nåsell, I. (1996). The quasistationary distribution of the closed endemic SIS model. Adv. Appl. Prob. 28, 895-932. (Pubitemid 126499161)
-
(1996)
Advances in Applied Probability
, vol.28
, Issue.3
, pp. 895-932
-
-
Nasell, I.1
-
17
-
-
2542509066
-
On the quasi-stationary distribution of the stochastic logistic epidemic
-
DOI 10.1016/S0025-5564(98)10059-7, PII S0025556498100597
-
Nåsell, I. (1999a). On the quasistationary distribution of the stochastic logistic epidemic. Math. Biosci. 156, 21-40. (Pubitemid 29157684)
-
(1999)
Mathematical Biosciences
, vol.156
, Issue.1-2
, pp. 21-40
-
-
Nasell, I.1
-
18
-
-
0033475339
-
On the time to extinction in recurrent epidemics
-
Nåsell, I. (1999b). On the time to extinction in recurrent epidemics. J. R. Statist. Soc. B 61, 309-330.
-
(1999)
J. R. Statist. Soc. B
, vol.61
, pp. 309-330
-
-
Nåsell, I.1
-
19
-
-
0347506351
-
An extension of the moment closure method
-
DOI 10.1016/S0040-5809(03)00074-1
-
Nåsell, I. (2003). An extension of the moment closure method. Theoret. Pop. Biol. 64, 233-239. (Pubitemid 38042768)
-
(2003)
Theoretical Population Biology
, vol.64
, Issue.2
, pp. 233-239
-
-
Nasell, I.1
-
20
-
-
33846982612
-
Stochastic and deterministic analysis of SIS household epidemics
-
DOI 10.1239/aap/1165414587
-
Neal, P. (2006). Stochastic and deterministic analysis of SIS household epidemics. Adv. Appl. Prob. 38, 943-968. (Correction: 44 (2012), 309-310.) (Pubitemid 46242865)
-
(2006)
Advances in Applied Probability
, vol.38
, Issue.4
, pp. 943-968
-
-
Neal, P.1
-
21
-
-
48549103917
-
The sis great circle epidemic model
-
Neal P. (2008). The SIS great circle epidemic model. J. Appl. Prob. 45, 513-530.
-
(2008)
J. Appl. Prob.
, vol.45
, pp. 513-530
-
-
Neal, P.1
-
22
-
-
84903764502
-
-
Foundations. 2nd edn. JohnWiley, Chichester
-
Rogers, L. C. G. andWilliams, D. (1994). Diffusions, Markov Processes, and Martingales,Vol. 1, Foundations. 2nd edn. JohnWiley, Chichester.
-
(1994)
Diffusions, Markov Processes, and Martingales
, vol.1
-
-
Rogers, L.C.G.1
Williams, D.2
-
23
-
-
0001088291
-
On the asymptotic final size distribution of epidemics in heterogeneous populations
-
Springer, NewYork.
-
Scalia-Tomba, G. (1990). On the asymptotic final size distribution of epidemics in heterogeneous populations. In Stochastic Processes in Epidemic Theory, Springer, NewYork., pp. 189-196.
-
(1990)
Stochastic Processes in Epidemic Theory
, pp. 189-196
-
-
Scalia-Tomba, G.1
-
24
-
-
0002618815
-
On the asymptotic behavior of the stochastic and deterministic models of an epidemic
-
Weiss, G. H. and Dishon, M. (1971). On the asymptotic behavior of the stochastic and deterministic models of an epidemic. Math. Biosci. 11, 261-265.
-
(1971)
Math. Biosci.
, vol.11
, pp. 261-265
-
-
Weiss, G.H.1
Dishon, M.2
|