메뉴 건너뛰기




Volumn 49, Issue 4, 2012, Pages 1036-1051

Approximating quasistationary distributions of birth-death processes

Author keywords

Cumulant closure; Logistic population growth; Moment closure; SIS epidemic model

Indexed keywords


EID: 84903774687     PISSN: 00219002     EISSN: None     Source Type: Journal    
DOI: 10.1239/jap/1354716656     Document Type: Article
Times cited : (6)

References (21)
  • 1
    • 0000565682 scopus 로고
    • Poisson approximation for some epidemic models
    • Ball, F. G. and Barbour, a. D. (1990). Poisson approximation for some epidemic models. J. Appl. Prob. 27, 479-490.
    • (1990) J. Appl. Prob , vol.27 , pp. 479-490
    • Ball, F.G.1    Barbour, A.D.2
  • 2
    • 80054752379 scopus 로고    scopus 로고
    • Total variation approximation for quasi-stationary distributions
    • Barbour, A. D. and Pollett, P. K. (2010). Total variation approximation for quasi-stationary distributions. J. Appl. Prob. 47, 934-946.
    • (2010) J. Appl. Prob , vol.47 , pp. 934-946
    • Barbour, A.D.1    Pollett, P.K.2
  • 3
    • 79960292204 scopus 로고    scopus 로고
    • Approximating the quasi-stationary distribution of the SIS model for endemic infection
    • Clancy, D. and Mendy, S. T. (2011). Approximating the quasi-stationary distribution of the SIS model for endemic infection. Methodology Comput. Appl Prob. 13, 603-618.
    • (2011) Methodology Comput. Appl Prob , vol.13 , pp. 603-618
    • Clancy, D.1    Mendy, S.T.2
  • 4
    • 0242508316 scopus 로고    scopus 로고
    • A note on quasi-stationary distributions of birth-death processes and the SIS logistic epidemic
    • Clancy, D. and Pollett, P. K. (2003). A note on quasi-stationary distributions of birth-death processes and the SIS logistic epidemic. J. Appl. Prob. 40, 821-825.
    • (2003) J. Appl. Prob , vol.40 , pp. 821-825
    • Clancy, D.1    Pollett, P.K.2
  • 5
    • 0000162773 scopus 로고
    • The distribution of the total size of an epidemic
    • University of California Press, Berkeley, CA
    • Daniels, H. E. (1967). The distribution of the total size of an epidemic. In Proc. 5th Berkeley Symp. Math. Statist. Prob., Vol. 4, University of California Press, Berkeley, CA, pp. 281-293.
    • (1967) Proc. 5Th Berkeley Symp. Math. Statist. Prob. , vol.4 , pp. 281-293
    • Daniels, H.E.1
  • 6
    • 0001383449 scopus 로고
    • On quasi-stationary distributions in absorbing continuous-time finite Markov chains
    • Darroch, J. N. and Seneta, E. (1967). On quasi-stationary distributions in absorbing continuous-time finite Markov chains. J. Appl. Prob. 4, 192-196.
    • (1967) J. Appl. Prob , vol.4 , pp. 192-196
    • Darroch, J.N.1    Seneta, E.2
  • 7
    • 0001240798 scopus 로고
    • Existence of quasistationary distributions. A renewal dynamical approach
    • Ferrari, P. A., Kesten, H., Martinez, S. and Picco, P. (1995). Existence of quasistationary distributions. A renewal dynamical approach. Ann. Prob. 23, 501-521.
    • (1995) Ann. Prob , vol.23 , pp. 501-521
    • Ferrari, P.A.1    Kesten, H.2    Martinez, S.3    Picco, P.4
  • 8
    • 0242452264 scopus 로고
    • Convergenceof quasi-stationarydistributions inbirth-deathprocesses
    • Keilson, J. and Ramaswamy, R. (1984). Convergenceof quasi-stationarydistributions inbirth-deathprocesses. Stoch. Process. Appl. 18, 301-312.
    • (1984) Stoch. Process. Appl , vol.18 , pp. 301-312
    • Keilson, J.1    Ramaswamy, R.2
  • 9
    • 0000311552 scopus 로고
    • On the extinction of the S-I-S stochastic logistic epidemic
    • Kryscio, R. J. and Lefevre, C. (1989). On the extinction of the S-I-S stochastic logistic epidemic. J. Appl. Prob. 27, 685-694.
    • (1989) J. Appl. Prob , vol.27 , pp. 685-694
    • Kryscio, R.J.1    Lefevre, C.2
  • 10
    • 0001107279 scopus 로고
    • Poisson approximation for the final state of a generalized epidemic process
    • Lefevre, C. and Utev, S. (1995). Poisson approximation for the final state of a generalized epidemic process. Ann. Prob. 23, 1139-1162.
    • (1995) Ann. Prob , vol.23 , pp. 1139-1162
    • Lefevre, C.1    Utev, S.2
  • 11
    • 0031235912 scopus 로고    scopus 로고
    • Mixed Poisson approximation in the collective epidemic model
    • Lefevre, C. and Utev, S. (1997). Mixed Poisson approximation in the collective epidemic model. Stoch. Process. Appl 69, 217-246.
    • (1997) Stoch. Process. Appl , vol.69 , pp. 217-246
    • Lefevre, C.1    Utev, S.2
  • 12
    • 0029839711 scopus 로고    scopus 로고
    • On approximating the moments of the equilibrium distribution of a stochastic logistic model
    • Matis, J. H. and Kiffe, T. R. (1996). On approximating the moments of the equilibrium distribution of a stochastic logistic model. Biometrics 52, 980-991.
    • (1996) Biometrics , vol.52 , pp. 980-991
    • Matis, J.H.1    Kiffe, T.R.2
  • 13
    • 0035822368 scopus 로고    scopus 로고
    • Extinction and quasi-stationarity in the Verhulst logistic model
    • Nasell, I. (2001). Extinction and quasi-stationarity in the Verhulst logistic model. J. Theoret. Biol. 211, 11-27.
    • (2001) J. Theoret. Biol , vol.211 , pp. 11-27
    • Nasell, I.1
  • 14
    • 0347506351 scopus 로고    scopus 로고
    • An extension of the moment closure method
    • Nasell, I. (2003). An extension of the moment closure method. Theoret. Pop. Biol. 64, 233-239.
    • (2003) Theoret. Pop. Biol , vol.64 , pp. 233-239
    • Nasell, I.1
  • 18
    • 0001630503 scopus 로고
    • On the distribution of the time to extinction in the stochastic logistic population model
    • Norden, R. H. (1982). On the distribution of the time to extinction in the stochastic logistic population model. Adv. Appl. Prob. 14, 687-708.
    • (1982) Adv. Appl. Prob , vol.14 , pp. 687-708
    • Norden, R.H.1
  • 19
    • 0035528749 scopus 로고    scopus 로고
    • The quasistationary distribution of the stochastic logistic model
    • Ovaskainen, O. (2001). The quasistationary distribution of the stochastic logistic model. J. Appl. Prob. 38, 898-907.
    • (2001) J. Appl. Prob , vol.38 , pp. 898-907
    • Ovaskainen, O.1
  • 20
    • 3242773541 scopus 로고
    • Diffusion approximations for some simple chemical reaction schemes
    • Pollett, P. K. and Vassallo, A. (1992). Diffusion approximations for some simple chemical reaction schemes. Adv. Appl. Prob. 24, 875-893.
    • (1992) Adv. Appl. Prob , vol.24 , pp. 875-893
    • Pollett, P.K.1    Vassallo, A.2
  • 21
    • 0002618815 scopus 로고
    • On the asymptotic behaviour of the stochastic and deterministic models of an epidemic
    • Weiss, G. H. and Dishon, M. (1971). On the asymptotic behaviour of the stochastic and deterministic models of an epidemic. Math. Biosci. 11, 261-265.
    • (1971) Math. Biosci , vol.11 , pp. 261-265
    • Weiss, G.H.1    Dishon, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.