-
1
-
-
0000565682
-
Poisson approximation for some epidemic models
-
Ball, F. G. and Barbour, a. D. (1990). Poisson approximation for some epidemic models. J. Appl. Prob. 27, 479-490.
-
(1990)
J. Appl. Prob
, vol.27
, pp. 479-490
-
-
Ball, F.G.1
Barbour, A.D.2
-
2
-
-
80054752379
-
Total variation approximation for quasi-stationary distributions
-
Barbour, A. D. and Pollett, P. K. (2010). Total variation approximation for quasi-stationary distributions. J. Appl. Prob. 47, 934-946.
-
(2010)
J. Appl. Prob
, vol.47
, pp. 934-946
-
-
Barbour, A.D.1
Pollett, P.K.2
-
3
-
-
79960292204
-
Approximating the quasi-stationary distribution of the SIS model for endemic infection
-
Clancy, D. and Mendy, S. T. (2011). Approximating the quasi-stationary distribution of the SIS model for endemic infection. Methodology Comput. Appl Prob. 13, 603-618.
-
(2011)
Methodology Comput. Appl Prob
, vol.13
, pp. 603-618
-
-
Clancy, D.1
Mendy, S.T.2
-
4
-
-
0242508316
-
A note on quasi-stationary distributions of birth-death processes and the SIS logistic epidemic
-
Clancy, D. and Pollett, P. K. (2003). A note on quasi-stationary distributions of birth-death processes and the SIS logistic epidemic. J. Appl. Prob. 40, 821-825.
-
(2003)
J. Appl. Prob
, vol.40
, pp. 821-825
-
-
Clancy, D.1
Pollett, P.K.2
-
5
-
-
0000162773
-
The distribution of the total size of an epidemic
-
University of California Press, Berkeley, CA
-
Daniels, H. E. (1967). The distribution of the total size of an epidemic. In Proc. 5th Berkeley Symp. Math. Statist. Prob., Vol. 4, University of California Press, Berkeley, CA, pp. 281-293.
-
(1967)
Proc. 5Th Berkeley Symp. Math. Statist. Prob.
, vol.4
, pp. 281-293
-
-
Daniels, H.E.1
-
6
-
-
0001383449
-
On quasi-stationary distributions in absorbing continuous-time finite Markov chains
-
Darroch, J. N. and Seneta, E. (1967). On quasi-stationary distributions in absorbing continuous-time finite Markov chains. J. Appl. Prob. 4, 192-196.
-
(1967)
J. Appl. Prob
, vol.4
, pp. 192-196
-
-
Darroch, J.N.1
Seneta, E.2
-
7
-
-
0001240798
-
Existence of quasistationary distributions. A renewal dynamical approach
-
Ferrari, P. A., Kesten, H., Martinez, S. and Picco, P. (1995). Existence of quasistationary distributions. A renewal dynamical approach. Ann. Prob. 23, 501-521.
-
(1995)
Ann. Prob
, vol.23
, pp. 501-521
-
-
Ferrari, P.A.1
Kesten, H.2
Martinez, S.3
Picco, P.4
-
8
-
-
0242452264
-
Convergenceof quasi-stationarydistributions inbirth-deathprocesses
-
Keilson, J. and Ramaswamy, R. (1984). Convergenceof quasi-stationarydistributions inbirth-deathprocesses. Stoch. Process. Appl. 18, 301-312.
-
(1984)
Stoch. Process. Appl
, vol.18
, pp. 301-312
-
-
Keilson, J.1
Ramaswamy, R.2
-
9
-
-
0000311552
-
On the extinction of the S-I-S stochastic logistic epidemic
-
Kryscio, R. J. and Lefevre, C. (1989). On the extinction of the S-I-S stochastic logistic epidemic. J. Appl. Prob. 27, 685-694.
-
(1989)
J. Appl. Prob
, vol.27
, pp. 685-694
-
-
Kryscio, R.J.1
Lefevre, C.2
-
10
-
-
0001107279
-
Poisson approximation for the final state of a generalized epidemic process
-
Lefevre, C. and Utev, S. (1995). Poisson approximation for the final state of a generalized epidemic process. Ann. Prob. 23, 1139-1162.
-
(1995)
Ann. Prob
, vol.23
, pp. 1139-1162
-
-
Lefevre, C.1
Utev, S.2
-
11
-
-
0031235912
-
Mixed Poisson approximation in the collective epidemic model
-
Lefevre, C. and Utev, S. (1997). Mixed Poisson approximation in the collective epidemic model. Stoch. Process. Appl 69, 217-246.
-
(1997)
Stoch. Process. Appl
, vol.69
, pp. 217-246
-
-
Lefevre, C.1
Utev, S.2
-
12
-
-
0029839711
-
On approximating the moments of the equilibrium distribution of a stochastic logistic model
-
Matis, J. H. and Kiffe, T. R. (1996). On approximating the moments of the equilibrium distribution of a stochastic logistic model. Biometrics 52, 980-991.
-
(1996)
Biometrics
, vol.52
, pp. 980-991
-
-
Matis, J.H.1
Kiffe, T.R.2
-
13
-
-
0035822368
-
Extinction and quasi-stationarity in the Verhulst logistic model
-
Nasell, I. (2001). Extinction and quasi-stationarity in the Verhulst logistic model. J. Theoret. Biol. 211, 11-27.
-
(2001)
J. Theoret. Biol
, vol.211
, pp. 11-27
-
-
Nasell, I.1
-
14
-
-
0347506351
-
An extension of the moment closure method
-
Nasell, I. (2003). An extension of the moment closure method. Theoret. Pop. Biol. 64, 233-239.
-
(2003)
Theoret. Pop. Biol
, vol.64
, pp. 233-239
-
-
Nasell, I.1
-
18
-
-
0001630503
-
On the distribution of the time to extinction in the stochastic logistic population model
-
Norden, R. H. (1982). On the distribution of the time to extinction in the stochastic logistic population model. Adv. Appl. Prob. 14, 687-708.
-
(1982)
Adv. Appl. Prob
, vol.14
, pp. 687-708
-
-
Norden, R.H.1
-
19
-
-
0035528749
-
The quasistationary distribution of the stochastic logistic model
-
Ovaskainen, O. (2001). The quasistationary distribution of the stochastic logistic model. J. Appl. Prob. 38, 898-907.
-
(2001)
J. Appl. Prob
, vol.38
, pp. 898-907
-
-
Ovaskainen, O.1
-
20
-
-
3242773541
-
Diffusion approximations for some simple chemical reaction schemes
-
Pollett, P. K. and Vassallo, A. (1992). Diffusion approximations for some simple chemical reaction schemes. Adv. Appl. Prob. 24, 875-893.
-
(1992)
Adv. Appl. Prob
, vol.24
, pp. 875-893
-
-
Pollett, P.K.1
Vassallo, A.2
-
21
-
-
0002618815
-
On the asymptotic behaviour of the stochastic and deterministic models of an epidemic
-
Weiss, G. H. and Dishon, M. (1971). On the asymptotic behaviour of the stochastic and deterministic models of an epidemic. Math. Biosci. 11, 261-265.
-
(1971)
Math. Biosci
, vol.11
, pp. 261-265
-
-
Weiss, G.H.1
Dishon, M.2
|