메뉴 건너뛰기




Volumn 24, Issue 6, 2014, Pages

A non-resonant, gravity-induced micro triboelectric harvester to collect kinetic energy from low-frequency jiggling movements of human limbs

Author keywords

electrostatic induction; energy conversion; microelectromechanical devices; triboelectricity

Indexed keywords

ELECTROSTATICS; ENERGY CONVERSION; FRICTION; KINETIC ENERGY; KINETICS; MICROELECTROMECHANICAL DEVICES; TRIBOELECTRICITY;

EID: 84903648382     PISSN: 09601317     EISSN: 13616439     Source Type: Journal    
DOI: 10.1088/0960-1317/24/6/065010     Document Type: Article
Times cited : (17)

References (26)
  • 1
    • 51649122440 scopus 로고    scopus 로고
    • Energy harvesting from human and machine motion for wireless electronic devices
    • 10.1109/JPROC.2008.927494 0018-9219
    • Mitcheson P D et al 2008 Energy harvesting from human and machine motion for wireless electronic devices Proc. IEEE 96 1457-86
    • (2008) Proc. IEEE , vol.96 , pp. 1457-1486
    • Mitcheson, P.D.1
  • 2
    • 84880299484 scopus 로고    scopus 로고
    • A new energy harvester design for high power output at low frequencies
    • 10.1016/j.sna.2013.06.009 0924-4247 A
    • Dhakar L et al 2013 A new energy harvester design for high power output at low frequencies Sensors Actuators A 199 344-52
    • (2013) Sensors Actuators , vol.199 , pp. 344-352
    • Dhakar, L.1
  • 3
    • 84882335450 scopus 로고    scopus 로고
    • Power enhancing by reversing mode sequence in tuned mass-spring unit attached vibration energy harvester
    • 10.1063/1.4813314 072103
    • Kim J E and Kim Y Y 2013 Power enhancing by reversing mode sequence in tuned mass-spring unit attached vibration energy harvester AIP Adv. 3 072103
    • (2013) AIP Adv. , vol.3
    • Kim, J.E.1    Kim, Y.Y.2
  • 4
    • 84875860452 scopus 로고    scopus 로고
    • A piezoelectric spring-mass system as a low-frequency energy harvester
    • 10.1109/TUFFC.2013.2633
    • Hu H et al 2013 A piezoelectric spring-mass system as a low-frequency energy harvester IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60 846-50
    • (2013) IEEE Trans. Ultrason. Ferroelectr. Freq. Control , vol.60 , pp. 846-850
    • Hu, H.1
  • 5
    • 84880033975 scopus 로고    scopus 로고
    • Micro-fabricated silicon spiral spring based electromagnetic energy harvester
    • 10.3938/jkps.62.1720 0374-4884
    • Bang D H and Park J Y 2013 Micro-fabricated silicon spiral spring based electromagnetic energy harvester J. Korean Phys. Soc. 62 1720-5
    • (2013) J. Korean Phys. Soc. , vol.62 , pp. 1720-1725
    • Bang, D.H.1    Park, J.Y.2
  • 6
    • 84873334791 scopus 로고    scopus 로고
    • A wideband, frequency up-converting bounded vibration energy harvester for a low-frequency environment
    • 10.1088/0964-1726/22/2/025018 0964-1726 025018
    • Ashraf K et al 2013 A wideband, frequency up-converting bounded vibration energy harvester for a low-frequency environment Smart Mater. Struct. 22 025018
    • (2013) Smart Mater. Struct. , vol.22 , Issue.2
    • Ashraf, K.1
  • 7
    • 84873192221 scopus 로고    scopus 로고
    • Novel miniature airflow energy harvester for wireless sensing applications in buildings
    • 10.1109/JSEN.2012.2226518 1530-437X
    • Zhu D et al 2013 Novel miniature airflow energy harvester for wireless sensing applications in buildings IEEE Sens. J. 13 691-700
    • (2013) IEEE Sens. J. , vol.13 , pp. 691-700
    • Zhu, D.1
  • 8
    • 84863434066 scopus 로고    scopus 로고
    • Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever
    • 10.1016/j.sna.2012.05.009 0924-4247 A
    • Foisal A R Md et al 2012 Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever Sensors Actuators A 182 106-13
    • (2012) Sensors Actuators , vol.182 , pp. 106-113
    • Foisal, A.R.1
  • 9
    • 84881478621 scopus 로고    scopus 로고
    • Wideband MEMS energy harvester driven by colored noise
    • 10.1109/JMEMS.2013.2248343 1057-7157
    • Nguyen S D et al 2013 Wideband MEMS energy harvester driven by colored noise J. Microelectromech. Syst. 22 892-900
    • (2013) J. Microelectromech. Syst. , vol.22 , pp. 892-900
    • Nguyen, S.D.1
  • 10
    • 78649759318 scopus 로고    scopus 로고
    • Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs
    • 10.1088/0960-1317/20/12/125009 0960-1317 125009
    • Nguyen D S et al 2010 Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs J. Micromech. Microeng. 20 125009
    • (2010) J. Micromech. Microeng. , vol.20 , Issue.12
    • Nguyen, D.S.1
  • 11
    • 84876957759 scopus 로고    scopus 로고
    • 3D energy harvester evaluation
    • 1210-2512
    • Janicek V and Husak M 2013 3D energy harvester evaluation Radioengineering 22 251-8
    • (2013) Radioengineering , vol.22 , pp. 251-258
    • Janicek, V.1    Husak, M.2
  • 12
    • 84884570307 scopus 로고    scopus 로고
    • Nonlinear dynamics of galloping-based piezoaeroelastic energy harvesters
    • Abdelkefi A 2013 Nonlinear dynamics of galloping-based piezoaeroelastic energy harvesters Eur. Phys. J. 222 1483-501
    • (2013) Eur. Phys. J. , vol.222 , pp. 1483-1501
    • Abdelkefi, A.1
  • 13
    • 84879405263 scopus 로고    scopus 로고
    • Non-resonant electrostatic energy harvester for wideband applications
    • 10.1049/mnl.2012.0924
    • Bu L et al 2013 Non-resonant electrostatic energy harvester for wideband applications Micro Nano Lett. 8 135-7
    • (2013) Micro Nano Lett. , vol.8 , pp. 135-137
    • Bu, L.1
  • 15
    • 34147113273 scopus 로고    scopus 로고
    • Direct-current nanogenerator driven by ultrasonic waves
    • DOI 10.1126/science.1139366
    • Wang X et al 2007 Direct-current nanogenerator driven by ultrasonic waves Science 316 102-5 (Pubitemid 46559527)
    • (2007) Science , vol.316 , Issue.5821 , pp. 102-105
    • Wang, X.1    Song, J.2    Liu, J.3    Zhong, L.W.4
  • 16
    • 84862289254 scopus 로고    scopus 로고
    • Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films
    • 10.1021/nl300988z
    • Fan F R et al 2012 Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films Nano Lett. 12 3109-14
    • (2012) Nano Lett. , vol.12 , pp. 3109-3114
    • Fan, F.R.1
  • 17
    • 84870879691 scopus 로고    scopus 로고
    • Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics
    • 10.1021/nl303573d
    • Wang S et al 2012 Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics Nano Lett. 12 6339-46
    • (2012) Nano Lett. , vol.12 , pp. 6339-6346
    • Wang, S.1
  • 18
    • 84873676798 scopus 로고    scopus 로고
    • Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator
    • 10.1021/nl4001053
    • Zhu G et al 2013 Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator Nano Lett. 13 847-53
    • (2013) Nano Lett. , vol.13 , pp. 847-853
    • Zhu, G.1
  • 19
    • 84874967575 scopus 로고    scopus 로고
    • Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems
    • 10.1021/nl3045684
    • Zhang X S et al 2013 Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems Nano Lett. 13 1168-72
    • (2013) Nano Lett. , vol.13 , pp. 1168-1172
    • Zhang, X.S.1
  • 20
    • 84876541745 scopus 로고    scopus 로고
    • Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions
    • 10.1021/nn4007708
    • Bai P et al 2013 Integrated multilayered triboelectric nanogenerator for harvesting biomechanical energy from human motions ACS Nano 7 3713-9
    • (2013) ACS Nano , vol.7 , pp. 3713-3719
    • Bai, P.1
  • 21
    • 84886998303 scopus 로고    scopus 로고
    • R-Shaped hybrid nanogenerator with enhanced piezoelectricity
    • 10.1021/nn404023v
    • Han M et al 2013 r-Shaped hybrid nanogenerator with enhanced piezoelectricity ACS Nano 7 8554-60
    • (2013) ACS Nano , vol.7 , pp. 8554-8560
    • Han, M.1
  • 22
    • 84879092885 scopus 로고    scopus 로고
    • Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy
    • 10.1021/nl4013002
    • Lin L et al 2013 Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy Nano Lett. 13 2916-23
    • (2013) Nano Lett. , vol.13 , pp. 2916-2923
    • Lin, L.1
  • 23
    • 84880804971 scopus 로고    scopus 로고
    • Cylindrical rotating triboelectric nanogenerator
    • 10.1021/nn402491y
    • Bai P et al 2013 Cylindrical rotating triboelectric nanogenerator ACS Nano 7 6361-6
    • (2013) ACS Nano , vol.7 , pp. 6361-6366
    • Bai, P.1
  • 24
    • 84896817510 scopus 로고    scopus 로고
    • Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor
    • 10.1021/am405637s
    • Lin L et al 2014 Noncontact free-rotating disk triboelectric nanogenerator as a sustainable energy harvester and self-powered mechanical sensor ACS Appl. Mater. Interfaces 6 3031-8
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 3031-3038
    • Lin, L.1
  • 25
    • 84900013674 scopus 로고    scopus 로고
    • Freestanding triboelectric-layer based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes
    • 10.1002/adma.201305303
    • Wang S et al 2014 Freestanding triboelectric-layer based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes Adv. Mater. at press
    • (2014) Adv. Mater.
    • Wang, S.1
  • 26
    • 84896774466 scopus 로고    scopus 로고
    • Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor
    • 10.1002/adfm.201302453
    • Zhang H et al 2014 Triboelectric nanogenerator for harvesting vibration energy in full space and as self-powered acceleration sensor Adv. Funct. Mater. 22 1401
    • (2014) Adv. Funct. Mater. , vol.22 , pp. 1401
    • Zhang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.