-
1
-
-
78149326046
-
A parallel splitting method for coupled monotone inclusions
-
Attouch, H, Briceño-Arias, LM and Combettes, PL. 2010. A parallel splitting method for coupled monotone inclusions. SIAM J. Control Optim., 48: 3246 - 3270.
-
(2010)
SIAM J. Control Optim.
, vol.48
, pp. 3246-3270
-
-
Attouch, H.1
Briceño-Arias, L.M.2
Combettes, P.L.3
-
2
-
-
0347211614
-
A general duality principle for the sum of two operators
-
Attouch, H and Théra, M. 1996. A general duality principle for the sum of two operators. J. Convex Anal., 3: 1 - 24.
-
(1996)
J. Convex Anal.
, vol.3
, pp. 1-24
-
-
Attouch, H.1
Théra, M.2
-
3
-
-
1942509685
-
Bregman monotone optimization algorithms
-
Bauschke, HH, Borwein, JM and Combettes, PL. 2003. Bregman monotone optimization algorithms. SIAM J. Control Optim., 42: 596 - 636.
-
(2003)
SIAM J. Control Optim.
, vol.42
, pp. 596-636
-
-
Bauschke, H.H.1
Borwein, J.M.2
Combettes, P.L.3
-
5
-
-
0001360721
-
A family of variable metric proximal methods
-
Bonnans, JF, Ch. Gilbert, J, Lemaréchal, C and Sagastizábal, CA. 1995. A family of variable metric proximal methods. Math. Program., 68: 15 - 47.
-
(1995)
Math. Program.
, vol.68
, pp. 15-47
-
-
Bonnans, J.F.1
Gilbert, C.J.2
Lemaréchal, C.3
Sagastizábal, C.A.4
-
7
-
-
84903631456
-
Monotone operator methods for Nash equilibria in non-potential games
-
In: Bailey D, Bauschke HH, Borwein P, Garvan F, Théra M, Vanderwerff J, Wolkowicz H, editors New York, New York,: Springer
-
Briceño-Arias, LM and Combettes, PL. 2013. " Monotone operator methods for Nash equilibria in non-potential games ". In Computational and Analytical Mathematics, Edited by: Bailey, D, Bauschke, HH, Borwein, P, Garvan, F, Théra, M, Vanderwerff, J and Wolkowicz, H. New York: Springer.
-
(2013)
Computational and Analytical Mathematics
-
-
Briceño-Arias, L.M.1
Combettes, P.L.2
-
8
-
-
0032202136
-
A variable metric proximal point algorithm for monotone operators
-
Burke, JV and Qian, M. 1999. A variable metric proximal point algorithm for monotone operators. SIAM J. Control Optim., 37: 353 - 375.
-
(1999)
SIAM J. Control Optim.
, vol.37
, pp. 353-375
-
-
Burke, J.V.1
Qian, M.2
-
9
-
-
0005041776
-
On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating
-
Burke, JV and Qian, M. 2000. On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating. Math. Program., 88: 157 - 181.
-
(2000)
Math. Program.
, vol.88
, pp. 157-181
-
-
Burke, J.V.1
Qian, M.2
-
10
-
-
0001106044
-
Proximal quasi-Newton methods for nondifferentiable convex optimization
-
Chen, X and Fukushima, M. 1999. Proximal quasi-Newton methods for nondifferentiable convex optimization. Math. Program., 85: 313 - 334.
-
(1999)
Math. Program.
, vol.85
, pp. 313-334
-
-
Chen, X.1
Fukushima, M.2
-
11
-
-
0031496462
-
Convergence rates in forward-backward splitting
-
Chen, GH-G and Rockafellar, RT. 1997. Convergence rates in forward-backward splitting. SIAM J. Optim., 7: 421 - 444.
-
(1997)
SIAM J. Optim.
, vol.7
, pp. 421-444
-
-
Chen, G.H.-G.1
Rockafellar, R.T.2
-
12
-
-
13244295576
-
Solving monotone inclusions via compositions of nonexpansive averaged operators
-
Combettes, PL. 2004. Solving monotone inclusions via compositions of nonexpansive averaged operators. Optimization, 53: 475 - 504.
-
(2004)
Optimization
, vol.53
, pp. 475-504
-
-
Combettes, P.L.1
-
13
-
-
79955006538
-
Dualization of signal recovery problems
-
Combettes, PL, Dũng, D and Vũ, BC. 2010. Dualization of signal recovery problems. Set-Valued Var. Anal., 18: 373 - 404.
-
(2010)
Set-Valued Var. Anal.
, vol.18
, pp. 373-404
-
-
Combettes, P.L.1
Dũng, D.2
Vũ, B.C.3
-
14
-
-
79955021435
-
Proximity for sums of composite functions
-
Combettes, PL, Dũng, D and Vũ, BC. 2011. Proximity for sums of composite functions. J. Math. Anal. Appl., 380: 680 - 688.
-
(2011)
J. Math. Anal. Appl.
, vol.380
, pp. 680-688
-
-
Combettes, P.L.1
Dũng, D.2
Vũ, B.C.3
-
15
-
-
84976486021
-
Proximal splitting methods in signal processing
-
In: Bauschke HH, Burachik RS, Combettes PL, Elser V, Luke DR, Wolkowicz H, editors New York, New York,: Springer
-
Combettes, PL and Pesquet, J-C. 2011. " Proximal splitting methods in signal processing ". In Fixed-Point Algorithms for Inverse Problems in Science and Engineering, Edited by: Bauschke, HH, Burachik, RS, Combettes, PL, Elser, V, Luke, DR and Wolkowicz, H. 185 - 212. New York: Springer.
-
(2011)
Fixed-Point Algorithms for Inverse Problems in Science and Engineering
, pp. 185-212
-
-
Combettes, P.L.1
Pesquet, J.-C.2
-
16
-
-
84869774172
-
Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators
-
Combettes, PL and Pesquet, J-C. 2012. Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal., 20: 307 - 330.
-
(2012)
Set-Valued Var. Anal.
, vol.20
, pp. 307-330
-
-
Combettes, P.L.1
Pesquet, J.-C.2
-
17
-
-
84868678967
-
Variable metric quasi-Fejér monotonicity
-
Combettes, PL and Vũ, BC. 2013. Variable metric quasi-Fejér monotonicity. Nonlinear Anal., 78: 17 - 31.
-
(2013)
Nonlinear Anal.
, vol.78
, pp. 17-31
-
-
Combettes, P.L.1
Vũ, B.C.2
-
18
-
-
30844438177
-
Signal recovery by proximal forward-backward splitting
-
Combettes, PL and Wajs, VR. 2005. Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul., 4: 1168 - 1200.
-
(2005)
Multiscale Model. Simul.
, vol.4
, pp. 1168-1200
-
-
Combettes, P.L.1
Wajs, V.R.2
-
19
-
-
84964389892
-
Variable metric method for minimization, Argonne National Laboratory research and development report 5990, 1959
-
reprinted in
-
Davidon, WC. 1991. Variable metric method for minimization, Argonne National Laboratory research and development report 5990, 1959. reprinted in SIAM J. Optim., 1: 1 - 17.
-
(1991)
SIAM J. Optim.
, vol.1
, pp. 1-17
-
-
Davidon, W.C.1
-
20
-
-
79952441863
-
A consistent algorithm to solve Lasso, elastic-net and Tikhonov regularization
-
De Vito, E, Umanità, V and Villa, S. 2011. A consistent algorithm to solve Lasso, elastic-net and Tikhonov regularization. J. Complexity, 27: 188 - 200.
-
(2011)
J. Complexity
, vol.27
, pp. 188-200
-
-
De Vito, E.1
Umanità, V.2
Villa, S.3
-
21
-
-
75249102673
-
Efficient online and batch learning using forward backward splitting
-
Duchi, J and Singer, Y. 2009. Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res., 10: 2899 - 2934.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 2899-2934
-
-
Duchi, J.1
Singer, Y.2
-
22
-
-
0001871553
-
Smooth methods of multipliers for complementarity problems
-
Eckstein, J and Ferris, MC. 1999. Smooth methods of multipliers for complementarity problems. Math. Program., 86: 65 - 90.
-
(1999)
Math. Program.
, vol.86
, pp. 65-90
-
-
Eckstein, J.1
Ferris, M.C.2
-
24
-
-
0003887107
-
-
Philadelphia, PA, Philadelphia, PA,: SIAM
-
Glowinski, R and Le Tallec, P. 1989. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, Philadelphia, PA: SIAM.
-
(1989)
Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics
-
-
Glowinski, R.1
Le Tallec, P.2
-
27
-
-
0000275440
-
Variable metric bundle methods: From conceptual to implementable forms
-
Lemaréchal, C and Sagastizábal, C. 1997. Variable metric bundle methods: From conceptual to implementable forms. Math. Program., 76: 393 - 410.
-
(1997)
Math. Program.
, vol.76
, pp. 393-410
-
-
Lemaréchal, C.1
Sagastizábal, C.2
-
28
-
-
73349137933
-
A class of variable metric decomposition methods for monotone variational inclusions
-
Lotito, PA, Parente, LA and Solodov, MV. 2009. A class of variable metric decomposition methods for monotone variational inclusions. J. Convex Anal., 16: 857 - 880.
-
(2009)
J. Convex Anal.
, vol.16
, pp. 857-880
-
-
Lotito, P.A.1
Parente, L.A.2
Solodov, M.V.3
-
29
-
-
0345934041
-
-
Bombay, India, Bombay, India,: Tata Institute of Fundamental Research
-
Mercier, B. 1979. Topics in Finite Element Solution of Elliptic Problems, Lectures on Mathematics, no. 63, Bombay, India: Tata Institute of Fundamental Research.
-
(1979)
Topics in Finite Element Solution of Elliptic Problems, Lectures on Mathematics, no. 63
-
-
Mercier, B.1
-
30
-
-
10044295538
-
-
Orsay, France, Orsay,: Université de Paris-XI, (Publications Mathématiques d'Orsay, no. 80.01)
-
Mercier, B. 1980. Inéquations Variationnelles de la Mécanique, Orsay, France: Université de Paris-XI. (Publications Mathématiques d'Orsay, no. 80.01)
-
(1980)
Inéquations Variationnelles de la Mécanique
-
-
Mercier, B.1
-
31
-
-
0001094804
-
Dual variational inequalities
-
Mosco, U. 1972. Dual variational inequalities. J. Math. Anal. Appl., 40: 202 - 206.
-
(1972)
J. Math. Anal. Appl.
, vol.40
, pp. 202-206
-
-
Mosco, U.1
-
32
-
-
61349121462
-
A class of inexact variable metric proximal point algorithms
-
Parente, LA, Lotito, PA and Solodov, MV. 2008. A class of inexact variable metric proximal point algorithms. SIAM J. Optim., 19: 240 - 260.
-
(2008)
SIAM J. Optim.
, vol.19
, pp. 240-260
-
-
Parente, L.A.1
Lotito, P.A.2
Solodov, M.V.3
-
33
-
-
0001015017
-
Variable metric methods of minimisation
-
Pearson, JD. 1969. Variable metric methods of minimisation. Comput. J., 12: 171 - 178.
-
(1969)
Comput. J.
, vol.12
, pp. 171-178
-
-
Pearson, J.D.1
-
34
-
-
0034403146
-
Dualization of generalized equations of maximal monotone type
-
Pennanen, T. 2000. Dualization of generalized equations of maximal monotone type. SIAM J. Optim., 10: 809 - 835.
-
(2000)
SIAM J. Optim.
, vol.10
, pp. 809-835
-
-
Pennanen, T.1
-
35
-
-
0001517804
-
A preconditioning proximal Newton method for nondifferentiable convex optimization
-
Qi, L and Chen, X. 1997. A preconditioning proximal Newton method for nondifferentiable convex optimization. Math. Program., 76: 411 - 429.
-
(1997)
Math. Program.
, vol.76
, pp. 411-429
-
-
Qi, L.1
Chen, X.2
-
36
-
-
0002247777
-
-
Ph.D. thesis, University of Washington, Seattle, WA
-
Qian, M. The variable metric proximal point algorithm: Theory and application, Ph.D. thesis, University of Washington, Seattle, WA, 1992
-
(1992)
The variable metric proximal point algorithm: Theory and application
-
-
Qian, M.1
-
37
-
-
0002121642
-
Composition duality and maximal monotonicity
-
Robinson, SM. 1999. Composition duality and maximal monotonicity. Math. Program., 85: 1 - 13.
-
(1999)
Math. Program.
, vol.85
, pp. 1-13
-
-
Robinson, S.M.1
-
38
-
-
84972498150
-
Duality and stability in extremum problems involving convex functions
-
Rockafellar, RT. 1967. Duality and stability in extremum problems involving convex functions. Pacific J. Math., 21: 167 - 187.
-
(1967)
Pacific J. Math.
, vol.21
, pp. 167-187
-
-
Rockafellar, R.T.1
-
39
-
-
0000626995
-
Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming
-
Tseng, P. 1990. Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming. Math. Program., 48: 249 - 263.
-
(1990)
Math. Program.
, vol.48
, pp. 249-263
-
-
Tseng, P.1
-
40
-
-
0026077016
-
Applications of a splitting algorithm to decomposition in convex programming and variational inequalities
-
Tseng, P. 1991. Applications of a splitting algorithm to decomposition in convex programming and variational inequalities. SIAM J. Control Optim., 29: 119 - 138.
-
(1991)
SIAM J. Control Optim.
, vol.29
, pp. 119-138
-
-
Tseng, P.1
-
41
-
-
84881041680
-
A splitting algorithm for dual monotone inclusions involving cocoercive operators
-
published on-line 2011
-
Vũ, BC. A splitting algorithm for dual monotone inclusions involving cocoercive operators, Adv. Comput. Math., published on-line 2011. http://www.springerlink.com/content/m177247u22644173/
-
Adv. Comput. Math.
-
-
Vũ, B.C.1
-
42
-
-
0030303868
-
Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities
-
Zhu, DL and Marcotte, P. 1996. Co-coercivity and its role in the convergence of iterative schemes for solving variational inequalities. SIAM J. Optim., 6: 714 - 726.
-
(1996)
SIAM J. Optim.
, vol.6
, pp. 714-726
-
-
Zhu, D.L.1
Marcotte, P.2
|