메뉴 건너뛰기




Volumn 13, Issue 1, 2014, Pages

A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals

Author keywords

Ensemble; Heartbeat classification; Random projection; Support vector machine; Supraventricular ectopic beat (SVEB); Ventricular ectopic beat (VEB)

Indexed keywords

HOSPITAL DATA PROCESSING;

EID: 84903344707     PISSN: None     EISSN: 1475925X     Source Type: Journal    
DOI: 10.1186/1475-925X-13-90     Document Type: Article
Times cited : (117)

References (36)
  • 1
    • 2942709662 scopus 로고    scopus 로고
    • Automatic classification of heartbeats using ECG morphology and heartbeat interval features
    • 10.1109/TBME.2004.827359, 15248536
    • de Chazal P, O'Dwyer M, Reilly RB. Automatic classification of heartbeats using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 2004, 51:1196-1206. 10.1109/TBME.2004.827359, 15248536.
    • (2004) IEEE Trans Biomed Eng , vol.51 , pp. 1196-1206
    • de Chazal, P.1    O'Dwyer, M.2    Reilly, R.B.3
  • 2
    • 45749122507 scopus 로고    scopus 로고
    • The physiological basis of the electrocardiogram
    • Boston: Artech House Publishers, Clifford GD, Azuaje F, McSharry PE
    • Reisner AT, Clifford GD, Mark RG. The physiological basis of the electrocardiogram. Advanced methods and tools for ECG data analysis 2006, 1-25. Boston: Artech House Publishers, Clifford GD, Azuaje F, McSharry PE.
    • (2006) Advanced methods and tools for ECG data analysis , pp. 1-25
    • Reisner, A.T.1    Clifford, G.D.2    Mark, R.G.3
  • 3
    • 33845865323 scopus 로고    scopus 로고
    • Robust neural-network based classification of premature ventricular contractions using wavelet transform and timing interval features
    • Inan OT, Giovangrandi L, Kovacs GTA. Robust neural-network based classification of premature ventricular contractions using wavelet transform and timing interval features. IEEE Trans Biomed Eng 2006, 53:2507-2515.
    • (2006) IEEE Trans Biomed Eng , vol.53 , pp. 2507-2515
    • Inan, O.T.1    Giovangrandi, L.2    Kovacs, G.T.A.3
  • 4
    • 45749119160 scopus 로고    scopus 로고
    • Robust electrocardiogram (ECG) beat classification using discrete wavelet transform
    • 10.1088/0967-3334/29/5/003, 18427158
    • Minhas FA, Arif M. Robust electrocardiogram (ECG) beat classification using discrete wavelet transform. Physiol Meas 2008, 29:555-570. 10.1088/0967-3334/29/5/003, 18427158.
    • (2008) Physiol Meas , vol.29 , pp. 555-570
    • Minhas, F.A.1    Arif, M.2
  • 5
    • 51749123574 scopus 로고    scopus 로고
    • Classification of electrocardiogram signals with support vector machines and particle swarm optimization
    • Melgani F, Bazi Y. Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans Inf Technol Biomed 2008, 12:667-677.
    • (2008) IEEE Trans Inf Technol Biomed , vol.12 , pp. 667-677
    • Melgani, F.1    Bazi, Y.2
  • 6
    • 38149072227 scopus 로고    scopus 로고
    • Assessment and comparison of different methods for heartbeat classification
    • 10.1016/j.medengphy.2007.02.003, 17382573
    • Jekova I, Bortolan G, Christov I. Assessment and comparison of different methods for heartbeat classification. Med Eng Phys 2008, 30:248-257. 10.1016/j.medengphy.2007.02.003, 17382573.
    • (2008) Med Eng Phys , vol.30 , pp. 248-257
    • Jekova, I.1    Bortolan, G.2    Christov, I.3
  • 7
    • 56349170342 scopus 로고    scopus 로고
    • Selection of significant independent components for ECG beat classification
    • Yu SN, Chou KT. Selection of significant independent components for ECG beat classification. Expert Syst Appl 2009, 36:2088-2096.
    • (2009) Expert Syst Appl , vol.36 , pp. 2088-2096
    • Yu, S.N.1    Chou, K.T.2
  • 8
    • 67349217457 scopus 로고    scopus 로고
    • Noise-tolerant electrocardiogram beat classification based on higher order statistics of subband components
    • 10.1016/j.artmed.2008.11.004, 19101129
    • Yu SN, Chen YH. Noise-tolerant electrocardiogram beat classification based on higher order statistics of subband components. Artif Intell Med 2009, 46:165-178. 10.1016/j.artmed.2008.11.004, 19101129.
    • (2009) Artif Intell Med , vol.46 , pp. 165-178
    • Yu, S.N.1    Chen, Y.H.2
  • 9
    • 78249264429 scopus 로고    scopus 로고
    • Active learning methods for electrocardiographic signal classification
    • Pasolli E, Melgani F. Active learning methods for electrocardiographic signal classification. IEEE T Inf Technol Biomed 2010, 14:1405-1416.
    • (2010) IEEE T Inf Technol Biomed , vol.14 , pp. 1405-1416
    • Pasolli, E.1    Melgani, F.2
  • 10
    • 84875751207 scopus 로고    scopus 로고
    • Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning
    • Javadia M, Abbaszadeh Aranib SAA, Sajedina A, Ebrahimpourb R. Classification of ECG arrhythmia by a modular neural network based on mixture of experts and negatively correlated learning. Biomed Signal Process 2013, 8:289-296.
    • (2013) Biomed Signal Process , vol.8 , pp. 289-296
    • Javadia, M.1    Abbaszadeh Aranib, S.A.A.2    Sajedina, A.3    Ebrahimpourb, R.4
  • 11
    • 79952156441 scopus 로고    scopus 로고
    • Heartbeat classification using feature selection driven by database generalization criteria
    • Llamedo-Soria M, Martinez JP. Heartbeat classification using feature selection driven by database generalization criteria. IEEE Trans Biomed Eng 2011, 58:616-625.
    • (2011) IEEE Trans Biomed Eng , vol.58 , pp. 616-625
    • Llamedo-Soria, M.1    Martinez, J.P.2
  • 12
    • 33845864226 scopus 로고    scopus 로고
    • A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features
    • de Chazal P, Reilly RB. A patient-adapting heartbeat classifier using ECG morphology and heartbeat interval features. IEEE Trans Biomed Eng 2006, 53:2535-2543.
    • (2006) IEEE Trans Biomed Eng , vol.53 , pp. 2535-2543
    • de Chazal, P.1    Reilly, R.B.2
  • 13
    • 36348956823 scopus 로고    scopus 로고
    • Block-based neural networks for personalized ECG signal classification
    • Jiang W, Kong S. Block-based neural networks for personalized ECG signal classification. IEEE Trans Biomed Eng 2007, 18:1750-1761.
    • (2007) IEEE Trans Biomed Eng , vol.18 , pp. 1750-1761
    • Jiang, W.1    Kong, S.2
  • 14
    • 67649208265 scopus 로고    scopus 로고
    • A generic and robust system for automated patient-specific classification of ecg signals
    • Ince T, Kiranyaz S, Gabbouj M. A generic and robust system for automated patient-specific classification of ecg signals. IEEE Trans Biomed Eng 2009, 56:1415-1426.
    • (2009) IEEE Trans Biomed Eng , vol.56 , pp. 1415-1426
    • Ince, T.1    Kiranyaz, S.2    Gabbouj, M.3
  • 18
    • 62949204704 scopus 로고    scopus 로고
    • An ECG classification model based on multilead wavelet transform features
    • Llamedo M, Martinez JP. An ECG classification model based on multilead wavelet transform features. Comput Cardiol 2007, 34:105-108.
    • (2007) Comput Cardiol , vol.34 , pp. 105-108
    • Llamedo, M.1    Martinez, J.P.2
  • 19
    • 79960710929 scopus 로고    scopus 로고
    • Optimization of ECG classification by means of feature selection
    • Mar T, Zaunseder S, Martinez JP. Optimization of ECG classification by means of feature selection. IEEE Trans Biomed Eng 2011, 58:2168-2177.
    • (2011) IEEE Trans Biomed Eng , vol.58 , pp. 2168-2177
    • Mar, T.1    Zaunseder, S.2    Martinez, J.P.3
  • 20
    • 79952510758 scopus 로고    scopus 로고
    • Weighted SVMs and feature relevance assessment in supervised heart beat classification
    • de Lannoy G, Francois D, Delbeke J, Verleysen M. Weighted SVMs and feature relevance assessment in supervised heart beat classification. Commun Comput Inf Sci 2011, 127:212-223.
    • (2011) Commun Comput Inf Sci , vol.127 , pp. 212-223
    • de Lannoy, G.1    Francois, D.2    Delbeke, J.3    Verleysen, M.4
  • 21
    • 80052679977 scopus 로고    scopus 로고
    • Feature selection for supervised interpatient heart beat classification
    • Doquire G, de Lannoy G, Francois D, Verleysen M. Feature selection for supervised interpatient heart beat classification. Comput Intell Neurosci 2011, 643816. Available: http://dx.doi.org/10.1155/2011/643816.
    • (2011) Comput Intell Neurosci , pp. 643816
    • Doquire, G.1    de Lannoy, G.2    Francois, D.3    Verleysen, M.4
  • 22
    • 84555190723 scopus 로고    scopus 로고
    • Weighted conditional random fields for supervised interpatient heartbeat classification
    • de Lannoy G, Francois D, Delbeke J, Verleysen M. Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans Biomed Eng 2012, 59:241-247.
    • (2012) IEEE Trans Biomed Eng , vol.59 , pp. 241-247
    • de Lannoy, G.1    Francois, D.2    Delbeke, J.3    Verleysen, M.4
  • 23
    • 84893972699 scopus 로고    scopus 로고
    • Heartbeat classification using disease-specific feature selection
    • Zhang ZC, Dong J, Luo XQ, Choi KS, Wu XJ. Heartbeat classification using disease-specific feature selection. Comput Biol Med 2014, 46:79-89.
    • (2014) Comput Biol Med , vol.46 , pp. 79-89
    • Zhang, Z.C.1    Dong, J.2    Luo, X.Q.3    Choi, K.S.4    Wu, X.J.5
  • 25
    • 0035789317 scopus 로고    scopus 로고
    • San Francisco: Association for Computing Machinery, Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: 26-29 August 2001
    • Bingham E, Mannila H. Random Projection in Dimensionality Reduction: Applications to Image and Text Data 2001, 245-250. San Francisco: Association for Computing Machinery, Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining: 26-29 August 2001.
    • (2001) Random Projection in Dimensionality Reduction: Applications to Image and Text Data , pp. 245-250
    • Bingham, E.1    Mannila, H.2
  • 26
    • 85032750937 scopus 로고    scopus 로고
    • An introduction to compressive sampling
    • Candès EJ, Wakin MB. An introduction to compressive sampling. IEEE Signal Proc Mag 2008, 25:21-30.
    • (2008) IEEE Signal Proc Mag , vol.25 , pp. 21-30
    • Candès, E.J.1    Wakin, M.B.2
  • 28
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • Software
    • Chang CC, Lin CJ. LIBSVM: a library for support vector machines. ACM TIST 2011, 2(27):1-27. Software available online: http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • (2011) ACM TIST , vol.2 , Issue.27 , pp. 1-27
    • Chang, C.C.1    Lin, C.J.2
  • 29
    • 20444490321 scopus 로고    scopus 로고
    • Integration of multiple neural classifiers for heart beat recognition
    • Hoai LT, Osowski S. Integration of multiple neural classifiers for heart beat recognition. Int J Comput Math Elect Electron Eng 2005, 24:648-661.
    • (2005) Int J Comput Math Elect Electron Eng , vol.24 , pp. 648-661
    • Hoai, L.T.1    Osowski, S.2
  • 30
    • 43749102493 scopus 로고    scopus 로고
    • Recognition and classification system of arrhythmia using ensemble of neural networks
    • Osowski S, Markiewicz T, Hoai LT. Recognition and classification system of arrhythmia using ensemble of neural networks. Measurement 2008, 41:610-617.
    • (2008) Measurement , vol.41 , pp. 610-617
    • Osowski, S.1    Markiewicz, T.2    Hoai, L.T.3
  • 31
    • 79951772030 scopus 로고    scopus 로고
    • Neural system for heartbeats recognition using genetically integrated ensemble of classifiers
    • 10.1016/j.compbiomed.2011.01.008, 21315326
    • Osowski S, Siwek K, Siroic R. Neural system for heartbeats recognition using genetically integrated ensemble of classifiers. Comput Biol Med 2011, 41:173-180. 10.1016/j.compbiomed.2011.01.008, 21315326.
    • (2011) Comput Biol Med , vol.41 , pp. 173-180
    • Osowski, S.1    Siwek, K.2    Siroic, R.3
  • 32
    • 80055041800 scopus 로고    scopus 로고
    • Improving ECG classification accuracy using an ensemble of neural network modules
    • doi:10.1371/journal.pone.0024386, 10.1371/journal.pone.0024386, 3202523, 22046232
    • Javadi M, Ebrahimpour R, Sajedin A, Faridi S, Zakernejad S. Improving ECG classification accuracy using an ensemble of neural network modules. PLoS One 2011, 6:e24386. doi:10.1371/journal.pone.0024386, 10.1371/journal.pone.0024386, 3202523, 22046232.
    • (2011) PLoS One , vol.6
    • Javadi, M.1    Ebrahimpour, R.2    Sajedin, A.3    Faridi, S.4    Zakernejad, S.5
  • 33
    • 70350346030 scopus 로고    scopus 로고
    • Ensemble Learning
    • Berlin: Springer-Verlag New York Inc, Li SZ, Jain AK
    • Zhou ZH. Ensemble Learning. Encyclopedia of Biometrics 2009, 270-273. Berlin: Springer-Verlag New York Inc, Li SZ, Jain AK.
    • (2009) Encyclopedia of Biometrics , pp. 270-273
    • Zhou, Z.H.1
  • 34
    • 0028960610 scopus 로고
    • Detection of ECG characteristic points using wavelet transform
    • 10.1109/10.362922, 7851927
    • Li CW, Zheng CX, Tai CF. Detection of ECG characteristic points using wavelet transform. IEEE Trans Biomed Eng 1995, 42:21-28. 10.1109/10.362922, 7851927.
    • (1995) IEEE Trans Biomed Eng , vol.42 , pp. 21-28
    • Li, C.W.1    Zheng, C.X.2    Tai, C.F.3
  • 36
    • 46249107626 scopus 로고    scopus 로고
    • QRS complexes detection for ECG signal: the difference operation method
    • Yeh YC, Wang WJ. QRS complexes detection for ECG signal: the difference operation method. Comput Meth Prog Bio 2008, 91:245-254.
    • (2008) Comput Meth Prog Bio , vol.91 , pp. 245-254
    • Yeh, Y.C.1    Wang, W.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.