메뉴 건너뛰기




Volumn 72, Issue 1-4, 2014, Pages 347-364

Empirical mode decomposition of pressure signal for health condition monitoring in waterjet cutting

Author keywords

Condition monitoring; Empirical mode decomposition; Principal component analysis; Waterjet cutting

Indexed keywords

FAULT DETECTION; JETS; MIXING; PRINCIPAL COMPONENT ANALYSIS; PUMPS; SIGNAL DETECTION;

EID: 84903314806     PISSN: 02683768     EISSN: 14333015     Source Type: Journal    
DOI: 10.1007/s00170-014-5671-4     Document Type: Article
Times cited : (12)

References (62)
  • 1
    • 0031270023 scopus 로고    scopus 로고
    • State of the art of research and development in abrasive waterjet machining
    • 10.1115/1.2836824
    • Kovacevic R, Hashish M, Mohan R, Ramulu M, Kim TJ, Geskin ES (1997) State of the art of research and development in abrasive waterjet machining. J Manuf Sci Eng 119(4):776-785
    • (1997) J Manuf Sci Eng , vol.119 , Issue.4 , pp. 776-785
    • Kovacevic, R.1    Hashish, M.2    Mohan, R.3    Ramulu, M.4    Kim, T.J.5    Geskin, E.S.6
  • 2
    • 78650064944 scopus 로고    scopus 로고
    • State-of-The-art predictive maintenance techniques
    • 10.1109/TIM.2010.2047662 2444167
    • Hashemian HM (2011) State-of-The-art predictive maintenance techniques. IEEE Trans Instrum Meas 60(1):226-236
    • (2011) IEEE Trans Instrum Meas , vol.60 , Issue.1 , pp. 226-236
    • Hashemian, H.M.1
  • 3
    • 84862526902 scopus 로고    scopus 로고
    • Vibration emission as a potential source of information for abrasive waterjet quality process control
    • 10.1007/s00170-011-3715-6
    • Perzel V, Hreha P, Hloch S, Tozan H, Valicek J (2012) Vibration emission as a potential source of information for abrasive waterjet quality process control. Int J Adv Manuf Technol 61(1-4):285-294
    • (2012) Int J Adv Manuf Technol , vol.61 , Issue.1-4 , pp. 285-294
    • Perzel, V.1    Hreha, P.2    Hloch, S.3    Tozan, H.4    Valicek, J.5
  • 4
    • 84855789286 scopus 로고    scopus 로고
    • Monitoring of vibrations in the technology of AWJ
    • Krenicky T, Miroslav R (2012) Monitoring of vibrations in the technology of AWJ. Key Eng Mater 96:229-234
    • (2012) Key Eng Mater , vol.96 , pp. 229-234
    • Krenicky, T.1    Miroslav, R.2
  • 5
    • 67349247361 scopus 로고    scopus 로고
    • An integrated monitoring method to supervise waterjet machining
    • 10.1016/j.cirp.2009.03.022
    • Axinte DA, Kong MC (2009) An integrated monitoring method to supervise waterjet machining. CIRP Ann Manuf Technol 58:303-306
    • (2009) CIRP Ann Manuf Technol , vol.58 , pp. 303-306
    • Axinte, D.A.1    Kong, M.C.2
  • 6
    • 84862983477 scopus 로고    scopus 로고
    • Acoustic emission energy transfer rate: A method for monitoring abrasive waterjet milling
    • 10.1016/j.ijmachtools.2012.05.012
    • Rabani A, Marinescu I, Axinte D (2012) Acoustic emission energy transfer rate: a method for monitoring abrasive waterjet milling. International Journal of Machine Tools & Manufacture 61:80-89
    • (2012) International Journal of Machine Tools & Manufacture , vol.61 , pp. 80-89
    • Rabani, A.1    Marinescu, I.2    Axinte, D.3
  • 7
    • 0031103745 scopus 로고    scopus 로고
    • Process analysis and monitoring in abrasive waterjet machining of alumina ceramics
    • 10.1016/S0890-6955(96)00049-1
    • Choi GS, Choi GH (1997) Process analysis and monitoring in abrasive waterjet machining of alumina ceramics. Int J Mach Tools Manuf 37(3):295-307
    • (1997) Int J Mach Tools Manuf , vol.37 , Issue.3 , pp. 295-307
    • Choi, G.S.1    Choi, G.H.2
  • 10
    • 9944230970 scopus 로고    scopus 로고
    • Monitoring of abrasive water jet (AWJ) cutting using sound detection
    • 10.1007/s00170-003-1752-5
    • Jurisevic B, Brissaud D, Junkar M (2004) Monitoring of abrasive water jet (AWJ) cutting using sound detection. Int J Adv Manuf Technol 24:733-737
    • (2004) Int J Adv Manuf Technol , vol.24 , pp. 733-737
    • Jurisevic, B.1    Brissaud, D.2    Junkar, M.3
  • 11
    • 48749087176 scopus 로고    scopus 로고
    • Measurements, analysis and interpretation of the signals from a high-pressure waterjet pump
    • 10.1109/TIM.2007.908345
    • Annoni M, Cristaldi L, Lazzaroni M (2008) Measurements, analysis and interpretation of the signals from a high-pressure waterjet pump. IEEE Trans Instrum Meas 57(1):34-47
    • (2008) IEEE Trans Instrum Meas , vol.57 , Issue.1 , pp. 34-47
    • Annoni, M.1    Cristaldi, L.2    Lazzaroni, M.3
  • 12
    • 70349456511 scopus 로고    scopus 로고
    • Nozzles classification in a high-pressure water jet system
    • 10.1109/TIM.2009.2019702
    • Annoni M, Cristaldi L, Lazzaroni M, Ferrari S (2009) Nozzles classification in a high-pressure water jet system. IEEE Trans Instrum Meas 58(10):3739-3745
    • (2009) IEEE Trans Instrum Meas , vol.58 , Issue.10 , pp. 3739-3745
    • Annoni, M.1    Cristaldi, L.2    Lazzaroni, M.3    Ferrari, S.4
  • 14
  • 15
    • 84887033265 scopus 로고    scopus 로고
    • A new approach for online health assessment of abrasive waterjet systems
    • 10.1504/IJAT.2013.057348
    • Grasso M, Goletti M, Annoni M, Colosimo BM (2013) A new approach for online health assessment of abrasive waterjet systems. Int J Abras Technol 6(2):158-181
    • (2013) Int J Abras Technol , vol.6 , Issue.2 , pp. 158-181
    • Grasso, M.1    Goletti, M.2    Annoni, M.3    Colosimo, B.M.4
  • 16
    • 36749079911 scopus 로고    scopus 로고
    • On the use of principal component analysis to identify systematic patterns in roundness profiles
    • 10.1002/qre.878
    • Colosimo BM, Pacella M (2007) On the use of principal component analysis to identify systematic patterns in roundness profiles. Qual Reliab Eng Int 23(6):707-725
    • (2007) Qual Reliab Eng Int , vol.23 , Issue.6 , pp. 707-725
    • Colosimo, B.M.1    Pacella, M.2
  • 20
    • 5444251684 scopus 로고    scopus 로고
    • A comparative study of short time Fourier transform and continuous wavelet transform for bearing condition monitoring
    • Kaewkongka T, Au YHJ, Rakowski RT, Jones BE (2003) A comparative study of short time Fourier transform and continuous wavelet transform for bearing condition monitoring. Int J COMADEM 6(1):41-48
    • (2003) Int J COMADEM , vol.6 , Issue.1 , pp. 41-48
    • Kaewkongka, T.1    Au, Y.H.J.2    Rakowski, R.T.3    Jones, B.E.4
  • 21
    • 0346306460 scopus 로고    scopus 로고
    • Application of the wavelet transform in machine condition monitoring and fault diagnostics: A review with bibliography
    • 10.1016/S0888-3270(03)00075-X
    • Peng ZK, Chu FL (2004) Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mech Syst Signal Process 18(2):199-221
    • (2004) Mech Syst Signal Process , vol.18 , Issue.2 , pp. 199-221
    • Peng, Z.K.1    Chu, F.L.2
  • 22
    • 33750562955 scopus 로고    scopus 로고
    • Wigner-Ville distribution based on EMD for faults diagnosis of bearings, fuzzy systems and knowledge discover
    • 10.1007/11881599-99
    • Li H, Zheng H, Tang L (2006) Wigner-Ville distribution based on EMD for faults diagnosis of bearings, fuzzy systems and knowledge discover. Lecture Notes in Computer Sciences 4223:803-812
    • (2006) Lecture Notes in Computer Sciences , vol.4223 , pp. 803-812
    • Li, H.1    Zheng, H.2    Tang, L.3
  • 23
    • 33646202517 scopus 로고    scopus 로고
    • System health monitoring and prognostics - A review of current paradigms and practices
    • 10.1007/s00170-004-2131-6
    • Kothamasu R, Huang SH, VerDuin WH (2006) System health monitoring and prognostics - a review of current paradigms and practices. Int J Adv Manuf Technol 28:1012-1024
    • (2006) Int J Adv Manuf Technol , vol.28 , pp. 1012-1024
    • Kothamasu, R.1    Huang, S.H.2    Verduin, W.H.3
  • 24
    • 84876940227 scopus 로고    scopus 로고
    • Recent advances in time-frequency analysis methods for machinery fault diagnosis: A review with application examples
    • 10.1016/j.ymssp.2013.01.017
    • Feng Z, Liang M, Chu F (2013) Recent advances in time-frequency analysis methods for machinery fault diagnosis: a review with application examples. Mech Syst Signal Process 38:165-205
    • (2013) Mech Syst Signal Process , vol.38 , pp. 165-205
    • Feng, Z.1    Liang, M.2    Chu, F.3
  • 25
    • 5444236478 scopus 로고    scopus 로고
    • The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis
    • 10.1098/rspa.1998.0193 0945.62093 1631591
    • Huang NE, Shen Z, Long SR, Wu ML, Shih HH et al (1998) The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc R Soc London Ser A 454:903-95
    • (1998) Proc. R. Soc. London Ser. A , vol.454 , pp. 903-995
    • Huang, N.E.1    Shen, Z.2    Long, S.R.3    Wu, M.L.4    Shih, H.H.5
  • 26
    • 0442326792 scopus 로고    scopus 로고
    • Empirical mode decomposition as a filter bank
    • 10.1109/LSP.2003.821662
    • Flandrin P, Rilling G, Goncalves P (2004) Empirical mode decomposition as a filter bank. IEEE Sig Process Lett 11(2):112-114
    • (2004) IEEE Sig. Process. Lett , vol.11 , Issue.2 , pp. 112-114
    • Flandrin, P.1    Rilling, G.2    Goncalves, P.3
  • 27
    • 18144399334 scopus 로고    scopus 로고
    • A comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing
    • 10.1016/j.ymssp.2004.01.006
    • Peng ZK, Tse PW, Chu FL (2005) A comparison study of improved Hilbert-Huang transform and wavelet transform: application to fault diagnosis for rolling bearing. Mech Syst Signal Process 19:974-988
    • (2005) Mech Syst Signal Process , vol.19 , pp. 974-988
    • Peng, Z.K.1    Tse, P.W.2    Chu, F.L.3
  • 28
    • 79951580715 scopus 로고    scopus 로고
    • Diagnostics of gear faults based on EMD and automatic selection of intrinsic mode functions
    • 10.1016/j.ymssp.2010.10.002
    • Ricci R, Pennacchi P (2011) Diagnostics of gear faults based on EMD and automatic selection of intrinsic mode functions. Mech Syst Signal Process 25(3):821-838
    • (2011) Mech Syst Signal Process , vol.25 , Issue.3 , pp. 821-838
    • Ricci, R.1    Pennacchi, P.2
  • 29
    • 4344660716 scopus 로고    scopus 로고
    • Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings
    • 10.1016/S0888-3270(03)00099-2
    • Yu D, Cheng J, Yang Y (2005) Application of EMD method and Hilbert spectrum to the fault diagnosis of roller bearings. Mech Syst Signal Process 19:259-270
    • (2005) Mech Syst Signal Process , vol.19 , pp. 259-270
    • Yu, D.1    Cheng, J.2    Yang, Y.3
  • 30
    • 33646680084 scopus 로고    scopus 로고
    • Structural health monitoring using empirical mode decomposition and the Hilbert phase
    • 10.1016/j.jsv.2005.10.024
    • Pines D, Salvino L (2006) Structural health monitoring using empirical mode decomposition and the Hilbert phase. J Sound Vib 294:97-124
    • (2006) J Sound Vib , vol.294 , pp. 97-124
    • Pines, D.1    Salvino, L.2
  • 31
    • 20644455171 scopus 로고    scopus 로고
    • Application of the empirical mode decomposition to the analysis of the esophageal manometric data in gastroesophageal reflux disease
    • 10.1109/TBME.2005.855719
    • Liang H, Lin Q-H, Chen JDZ (2005) Application of the empirical mode decomposition to the analysis of the esophageal manometric data in gastroesophageal reflux disease. IEEE Trans Biomed Eng 52(10):1692-1701
    • (2005) IEEE Trans Biomed Eng , vol.52 , Issue.10 , pp. 1692-1701
    • Liang, H.1    Lin, Q.-H.2    Chen, J.D.Z.3
  • 33
    • 84855426522 scopus 로고    scopus 로고
    • Internal leakage detection in hydraulic actuators using empirical mode decomposition and Hilbert spectrum
    • 10.1109/TIM.2011.2161938
    • Goharrizi AY, Sepehri N (2012) Internal leakage detection in hydraulic actuators using empirical mode decomposition and Hilbert spectrum. IEEE Transactions on Instrumentation & Measurement 61(2):368-378
    • (2012) IEEE Transactions on Instrumentation & Measurement , vol.61 , Issue.2 , pp. 368-378
    • Goharrizi, A.Y.1    Sepehri, N.2
  • 34
    • 80052102086 scopus 로고    scopus 로고
    • Boundary extension and stop criteria for empirical mode decomposition
    • 10.1142/S1793536910000434 2659393
    • Wu Q, Riemenschneider SD (2010) Boundary extension and stop criteria for empirical mode decomposition. Advances in Adaptive Data Analysis 2(2):157-169
    • (2010) Advances in Adaptive Data Analysis , vol.2 , Issue.2 , pp. 157-169
    • Wu, Q.1    Riemenschneider, S.D.2
  • 36
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: A noise assisted data analysis method
    • 10.1142/S1793536909000047
    • Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise assisted data analysis method. Advances in Adaptive Data Analysis 1(1):1-41
    • (2009) Advances in Adaptive Data Analysis , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.1    Huang, N.E.2
  • 37
    • 77949491282 scopus 로고    scopus 로고
    • Multivariate and multiscale monitoring of large-size low speed bearings using ensemble empirical mode decomposition method combined with principal component analysis
    • 10.1016/j.ymssp.2009.09.002
    • Zvokelj M, Zupan S, Prebil I (2010) Multivariate and multiscale monitoring of large-size low speed bearings using ensemble empirical mode decomposition method combined with principal component analysis. Mech Syst Signal Process 24:1049-1067
    • (2010) Mech Syst Signal Process , vol.24 , pp. 1049-1067
    • Zvokelj, M.1    Zupan, S.2    Prebil, I.3
  • 38
    • 79960045420 scopus 로고    scopus 로고
    • Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method
    • 10.1016/j.ymssp.2011.03.002
    • Zvokelj M, Zupan S, Prebil I (2011) Non-linear multivariate and multiscale monitoring and signal denoising strategy using kernel principal component analysis combined with ensemble empirical mode decomposition method. Mech Syst Signal Process 25(7):2631-2653
    • (2011) Mech Syst Signal Process , vol.25 , Issue.7 , pp. 2631-2653
    • Zvokelj, M.1    Zupan, S.2    Prebil, I.3
  • 39
    • 77955569587 scopus 로고    scopus 로고
    • Performance enhancement of ensemble empirical mode decomposition
    • 10.1016/j.ymssp.2010.03.003
    • Zhang J, Yan R, Gao RX, Feng Z (2010) Performance enhancement of ensemble empirical mode decomposition. Mech Syst Signal Process 24:2104-2123
    • (2010) Mech Syst Signal Process , vol.24 , pp. 2104-2123
    • Zhang, J.1    Yan, R.2    Gao, R.X.3    Feng, Z.4
  • 40
    • 41649107459 scopus 로고    scopus 로고
    • Rotating machine fault diagnosis using empirical mode decomposition
    • 10.1016/j.ymssp.2007.10.003
    • Gao Q, Duan C, Fan H, Meng Q (2008) Rotating machine fault diagnosis using empirical mode decomposition. Mech Syst Signal Process 22:1072-1081
    • (2008) Mech Syst Signal Process , vol.22 , pp. 1072-1081
    • Gao, Q.1    Duan, C.2    Fan, H.3    Meng, Q.4
  • 42
    • 13844262669 scopus 로고    scopus 로고
    • Damage detection in gear systems using empirical mode decomposition
    • 10.1016/j.engstruct.2004.07.007
    • Loutridis SJ (2004) Damage detection in gear systems using empirical mode decomposition. Eng Struct 26:1833-1841
    • (2004) Eng Struct , vol.26 , pp. 1833-1841
    • Loutridis, S.J.1
  • 44
    • 80052102628 scopus 로고    scopus 로고
    • A criterion for selecting relevant intrinsic mode functions in empirical mode decomposition
    • 10.1142/S1793536910000367
    • Ayenu-Prah A, Attoh-Okine N (2010) A criterion for selecting relevant intrinsic mode functions in empirical mode decomposition. Advances in Adaptive Data Analysis 2(1):1-24
    • (2010) Advances in Adaptive Data Analysis , vol.2 , Issue.1 , pp. 1-24
    • Ayenu-Prah, A.1    Attoh-Okine, N.2
  • 46
    • 0036474028 scopus 로고    scopus 로고
    • A self-starting control for multivariate individual observations
    • 10.1198/004017002753398290 1938733
    • Sullivan JH, Jones LA (2002) A self-starting control for multivariate individual observations. Technometrics 44(1):24-33
    • (2002) Technometrics , vol.44 , Issue.1 , pp. 24-33
    • Sullivan, J.H.1    Jones, L.A.2
  • 48
    • 70350545990 scopus 로고    scopus 로고
    • A new approach to detection of defects in rolling element bearings based on statistical pattern recognition
    • 10.1007/s00170-009-1953-7
    • Stepanic P, Latinovic IV, Djurovic Z (2009) A new approach to detection of defects in rolling element bearings based on statistical pattern recognition. Int J Adv Manuf Technol 45:91-100
    • (2009) Int J Adv Manuf Technol , vol.45 , pp. 91-100
    • Stepanic, P.1    Latinovic, I.V.2    Djurovic, Z.3
  • 50
    • 84888378568 scopus 로고    scopus 로고
    • Intelligent fault diagnosis and prognosis approach for rotating machinery integrating wavelet transform, principal component analysis, and artificial neural networks, international journal of advanced manufacturing technology
    • 10.1007/s00170-013-4797-0
    • Zhang Z, Wang Y, Wang K (2013) Intelligent fault diagnosis and prognosis approach for rotating machinery integrating wavelet transform, principal component analysis, and artificial neural networks, international journal of advanced manufacturing technology. International Journal Advanced Manufacturing Technology 68:763-773
    • (2013) International Journal Advanced Manufacturing Technology , vol.68 , pp. 763-773
    • Zhang, Z.1    Wang, Y.2    Wang, K.3
  • 51
    • 84655169953 scopus 로고    scopus 로고
    • Empirical mode decomposition and principal component analysis implementation in processing non-invasive cardiovascular signals
    • Pinheiro E, Postolache O, Girao P (2012) Empirical mode decomposition and principal component analysis implementation in processing non-invasive cardiovascular signals. Measurements 45:175-181
    • (2012) Measurements , vol.45 , pp. 175-181
    • Pinheiro, E.1    Postolache, O.2    Girao, P.3
  • 52
    • 84858295509 scopus 로고    scopus 로고
    • An EMD and PCA hybrid approach for separating noise from signal, and signal in climate change detection
    • 10.1002/joc.2299
    • Lee T, Ouarda TBMJ (2012) An EMD and PCA hybrid approach for separating noise from signal, and signal in climate change detection. Int J Climatol 32:624-634
    • (2012) Int J Climatol , vol.32 , pp. 624-634
    • Lee, T.1    Ouarda, T.2
  • 53
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components: The variance of reconstruction error criterion with a comparison to other methods
    • 10.1021/ie990110i
    • Valle S, Li W, Qin SJ (1999) Selection of the number of principal components: the variance of reconstruction error criterion with a comparison to other methods. Industrial & Engineering Chemistry Research 38:4389-4401
    • (1999) Industrial & Engineering Chemistry Research , vol.38 , pp. 4389-4401
    • Valle, S.1    Li, W.2    Qin, S.J.3
  • 54
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal components models
    • 1
    • Wold S, Cross-validatory estimation of the number of components in factor and principal components models, Technometrics, Vol. 20, no. 4, no. 1, pp. 397-405, 1978
    • (1978) Technometrics , vol.20 , Issue.4 , pp. 397-405
    • Wold, S.1
  • 55
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • 10.1080/00401706.1995.10485888 0825.62740
    • Nomikos P, MacGregor JF (1995) Multivariate SPC charts for monitoring batch processes. Technometrics 37(1):41-59
    • (1995) Technometrics , vol.37 , Issue.1 , pp. 41-59
    • Nomikos, P.1    Macgregor, J.F.2
  • 57
    • 84886800527 scopus 로고    scopus 로고
    • Condition monitoring of an ultra high pressure intensifier for waterjet cutting machines
    • 10.1016/j.procir.2013.09.034
    • Goletti M, Grasso M, Annoni M, Colosimo BM (2013) Condition monitoring of an ultra high pressure intensifier for waterjet cutting machines. Procedia CIRP 12:193-198
    • (2013) Procedia CIRP , vol.12 , pp. 193-198
    • Goletti, M.1    Grasso, M.2    Annoni, M.3    Colosimo, B.M.4
  • 58
    • 0000386489 scopus 로고
    • Application of model-selection criteria to some problems in multivariate analysis
    • 10.1007/BF02294360
    • Sclove SL (1987) Application of model-selection criteria to some problems in multivariate analysis. Psychometrika 52(3):333-343
    • (1987) Psychometrika , vol.52 , Issue.3 , pp. 333-343
    • Sclove, S.L.1
  • 59
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to multivariate statistical process monitoring
    • 10.1002/aic.690440712
    • Bakshi BR (1998) Multiscale PCA with application to multivariate statistical process monitoring. AIChE J 4(7):1596-1610
    • (1998) AIChE J , vol.4 , Issue.7 , pp. 1596-1610
    • Bakshi, B.R.1
  • 60
    • 0041355444 scopus 로고    scopus 로고
    • Combination method of principal component and wavelet analysis for multivariate process monitoring and fault diagnosis
    • 10.1021/ie0207313
    • Lu N, Wang F, Gao F (2003) Combination method of principal component and wavelet analysis for multivariate process monitoring and fault diagnosis. Ind Eng Chem Res 42:4198-4207
    • (2003) Ind Eng Chem Res , vol.42 , pp. 4198-4207
    • Lu, N.1    Wang, F.2    Gao, F.3
  • 61
    • 33947184273 scopus 로고    scopus 로고
    • An SPC monitoring system for cycle-based waveform signals using haar transform
    • 10.1109/TASE.2005.859655
    • Zhou S, Sun B, Shi J (2006) An SPC monitoring system for cycle-based waveform signals using haar transform. IEEE Trans Autom Sci Eng 3(1):60-72
    • (2006) IEEE Trans Autom Sci Eng , vol.3 , Issue.1 , pp. 60-72
    • Zhou, S.1    Sun, B.2    Shi, J.3
  • 62
    • 0026686048 scopus 로고
    • Entropy-based algorithms for best basis selection
    • 10.1109/18.119732 0849.94005
    • Coifman RR, Wickerhauser MV (1992) Entropy-based algorithms for best basis selection. IEEE Trans Inf Theory 38(2):713-718
    • (1992) IEEE Trans Inf Theory , vol.38 , Issue.2 , pp. 713-718
    • Coifman, R.R.1    Wickerhauser, M.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.