메뉴 건너뛰기




Volumn 19, Issue 5, 2014, Pages

Improving your exploratory factor analysis for ordinal data: A demonstration using FACTOR

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84902972018     PISSN: None     EISSN: 15317714     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (252)

References (36)
  • 1
    • 0001029742 scopus 로고
    • The sensitivity of confirmatory maximum likelihood factor analysis to violations of measurement scale and distributional assumptions
    • Babakus, E., Ferguson, J. C. E., & Jöreskog, K. G. (1987). The sensitivity of confirmatory maximum likelihood factor analysis to violations of measurement scale and distributional assumptions. Journal of Marketing Research, 24(2), 222-228.
    • (1987) Journal of Marketing Research , vol.24 , Issue.2 , pp. 222-228
    • Babakus, E.1    Ferguson, J.C.E.2    Jöreskog, K.G.3
  • 2
    • 84857398252 scopus 로고    scopus 로고
    • An SPSS R-Menu for ordinal factor analysis
    • Basto, M., & Pereira, J. M. (2012). An SPSS R-Menu for ordinal factor analysis. Journal of Statistical Software, 46(4), 1-29.
    • (2012) Journal of Statistical Software , vol.46 , Issue.4 , pp. 1-29
    • Basto, M.1    Pereira, J.M.2
  • 4
    • 58149373040 scopus 로고
    • Factoring items and factoring scales are different: Spurious evidence for multidimensionality due to item categorization
    • doi:10.1037/0033-2909.105.3.467
    • Bernstein, I. H., & Teng, G. (1989). Factoring items and factoring scales are different: Spurious evidence for multidimensionality due to item categorization. Psychological Bulletin, 105(3), 467-477. doi:10.1037/0033-2909.105.3.467
    • (1989) Psychological Bulletin , vol.105 , Issue.3 , pp. 467-477
    • Bernstein, I.H.1    Teng, G.2
  • 5
    • 84880609979 scopus 로고    scopus 로고
    • Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis
    • Retrieved from
    • Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation, 10(7), 1-9. Retrieved from http://pareonline.net/pdf/v10n7.pdf
    • (2005) Practical Assessment, Research & Evaluation , vol.10 , Issue.7 , pp. 1-9
    • Costello, A.B.1    Osborne, J.W.2
  • 6
    • 84886299055 scopus 로고    scopus 로고
    • Determining the number of factors to retain in EFA: Using the SPSS R-Menu v2.0 to make more judicious estimations
    • Retrieved from
    • Courtney, M. G. R. (2013). Determining the number of factors to retain in EFA: Using the SPSS R-Menu v2.0 to make more judicious estimations. Practical Assessment, Research & Evaluation, 18(8), 1-14. Retrieved from http://pareonline.net/pdf/v18n8.pdf
    • (2013) Practical Assessment, Research & Evaluation , vol.18 , Issue.8 , pp. 1-14
    • Courtney, M.G.R.1
  • 7
    • 0000714518 scopus 로고
    • Note: Inter-rater reliabiliy of scree test and mean square ratio test of number of factors
    • doi:10.2466/pms.1979.49.1.223
    • Crawford, C. B., & Koopman, P. (1979). Note: Inter-rater reliabiliy of scree test and mean square ratio test of number of factors. Perceptual and Motor Skills, 49(1), 223-226. doi:10.2466/pms.1979.49.1.223
    • (1979) Perceptual and Motor Skills , vol.49 , Issue.1 , pp. 223-226
    • Crawford, C.B.1    Koopman, P.2
  • 8
    • 84877138276 scopus 로고    scopus 로고
    • Understanding and using factor scores: Considerations for the applied researcher
    • Retrieved from
    • DiStefano, C., Zhu, M., & Mindrilla, D. (2009). Understanding and using factor scores: Considerations for the applied researcher. Practical Assessment, Research & Evaluation, 14(20), 1-11. Retrieved from http://pareonline.net/pdf/v14n20.pdf
    • (2009) Practical Assessment, Research & Evaluation , vol.14 , Issue.20 , pp. 1-11
    • DiStefano, C.1    Zhu, M.2    Mindrilla, D.3
  • 9
    • 0039620968 scopus 로고    scopus 로고
    • Evaluating the use of exploratory factor analysis in psychological research
    • doi:10.1037/1082-989X.4.3.272
    • Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272-299. doi:10.1037/1082-989X.4.3.272
    • (1999) Psychological Methods , vol.4 , Issue.3 , pp. 272-299
    • Fabrigar, L.R.1    Wegener, D.T.2    MacCallum, R.C.3    Strahan, E.J.4
  • 10
    • 84892456989 scopus 로고    scopus 로고
    • A new look at Horn's parallel analysis with ordinal variables
    • doi:10.1037/a0030005
    • Garrido, L. E., Abad, F. J., & Ponsoda, V. (2013). A new look at Horn's parallel analysis with ordinal variables. Psychological Methods, 18(4), 454-74. doi:10.1037/a0030005
    • (2013) Psychological Methods , vol.18 , Issue.4 , pp. 454-474
    • Garrido, L.E.1    Abad, F.J.2    Ponsoda, V.3
  • 11
    • 84894257976 scopus 로고    scopus 로고
    • On exploratory factor analysis: A review of recent evidence, an assessment of current practice, and recommendations for future use
    • doi:10.1016/j.ijnurstu.2013.10.005
    • Gaskin, C. J., & Happell, B. (2013). On exploratory factor analysis: A review of recent evidence, an assessment of current practice, and recommendations for future use. International Journal of Nursing Studies. doi:10.1016/j.ijnurstu.2013.10.005
    • (2013) International Journal of Nursing Studies.
    • Gaskin, C.J.1    Happell, B.2
  • 12
    • 58149208119 scopus 로고
    • The development of the markers for the Big-Five factor structure
    • Goldberg, L. R. (1992). The development of the markers for the Big-Five factor structure. Psychological Assessment, 4, 26-42.
    • (1992) Psychological Assessment , vol.4 , pp. 26-42
    • Goldberg, L.R.1
  • 13
    • 72749123769 scopus 로고    scopus 로고
    • Polychoric versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables
    • doi:10.1007/s11135-008-9190-y
    • Holgado-Tello, F. P., Chacón-Moscoso, S., Barbero-García, I., & Vila-Abad, E. (2008). Polychoric versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables. Quality & Quantity, 44(1), 153-166. doi:10.1007/s11135-008-9190-y
    • (2008) Quality & Quantity , vol.44 , Issue.1 , pp. 153-166
    • Holgado-Tello, F.P.1    Chacón-Moscoso, S.2    Barbero-García, I.3    Vila-Abad, E.4
  • 14
    • 8644267207 scopus 로고
    • A rationale and test for the number of factors in factor analysis
    • doi:10.1007/BF02289447
    • Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179-185. doi:10.1007/BF02289447
    • (1965) Psychometrika , vol.30 , Issue.2 , pp. 179-185
    • Horn, J.L.1
  • 15
    • 38249036936 scopus 로고
    • An empirical comparison of alternative methods for principal component extraction
    • doi:10.1016/0148-2963(84)90047-X
    • Hubbard, R., & Allen, S. J. (1987). An empirical comparison of alternative methods for principal component extraction. Journal of Business Research, 15(2), 173-190. doi:10.1016/0148-2963(84)90047-X
    • (1987) Journal of Business Research , vol.15 , Issue.2 , pp. 173-190
    • Hubbard, R.1    Allen, S.J.2
  • 16
    • 0010017776 scopus 로고
    • Note on a criterion for the number of common factors
    • doi:10.1177/001316446902900303
    • Humphreys, L. G., & Ilgen, D. R. (1969). Note on a criterion for the number of common factors. Educational and Psychological Measurement, 29(3), 571-578. doi:10.1177/001316446902900303
    • (1969) Educational and Psychological Measurement , vol.29 , Issue.3 , pp. 571-578
    • Humphreys, L.G.1    Ilgen, D.R.2
  • 17
    • 84871782260 scopus 로고    scopus 로고
    • IBM SPSS Statistics 21 for Windows
    • IBM Corp, Armonk, NY: IBM Corp
    • IBM Corp. (2012). IBM SPSS Statistics 21 for Windows. Armonk, NY: IBM Corp.
    • (2012)
  • 18
    • 0033235256 scopus 로고    scopus 로고
    • Promin: A Method for Oblique Factor Rotation
    • doi:10.1207/S15327906MBR3403_3
    • Lorenzo-Seva, U. (1999). Promin: A Method for Oblique Factor Rotation. Multivariate Behavioral Research, 34(3), 347-365. doi:10.1207/S15327906MBR3403_3
    • (1999) Multivariate Behavioral Research , vol.34 , Issue.3 , pp. 347-365
    • Lorenzo-Seva, U.1
  • 19
    • 84902981786 scopus 로고    scopus 로고
    • How to report the percentage of explained common variance in exploratory factor analysis. Technical report
    • Tarragona. Retrieved from
    • Lorenzo-Seva, U. (2013). How to report the percentage of explained common variance in exploratory factor analysis. Technical report. Tarragona. Retrieved from http://psico.fcep.urv.cat/utilitats/factor/
    • (2013)
    • Lorenzo-Seva, U.1
  • 20
    • 33746742446 scopus 로고    scopus 로고
    • FACTOR: A computer program to fit the exploratory factor analysis model
    • Lorenzo-Seva, U., & Ferrando, P. J. (2006). FACTOR: A computer program to fit the exploratory factor analysis model. Behavior Research Methods, 38(1), 88-91.
    • (2006) Behavior Research Methods , vol.38 , Issue.1 , pp. 88-91
    • Lorenzo-Seva, U.1    Ferrando, P.J.2
  • 21
    • 2942611661 scopus 로고
    • Measures of multivariate skewness and kurtosis with applications
    • doi:10.1093/biomet/57.3.519
    • Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3), 519-530. doi:10.1093/biomet/57.3.519
    • (1970) Biometrika , vol.57 , Issue.3 , pp. 519-530
    • Mardia, K.V.1
  • 22
    • 84877136779 scopus 로고    scopus 로고
    • How to factor-analyse your data right: Do's dont's, and how-to's
    • Matsunaga, M. (2010). How to factor-analyse your data right: Do's dont's, and how-to's. International Journal of Psychological Research, 3(1), 97-110.
    • (2010) International Journal of Psychological Research , vol.3 , Issue.1 , pp. 97-110
    • Matsunaga, M.1
  • 23
    • 0004105694 scopus 로고
    • BILOG 3: Item analysis and test scoring with binary logistic regression models
    • Mooresville, IN: Scientific Software
    • Mislevy, R. J., & Bock, R. D. (1990). BILOG 3: Item analysis and test scoring with binary logistic regression models. Mooresville, IN: Scientific Software.
    • (1990)
    • Mislevy, R.J.1    Bock, R.D.2
  • 24
    • 0000541399 scopus 로고
    • Maximum likelihood estimation of the polychoric correlation coefficient
    • Olsson, U. (1979a). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44(4), 443-460.
    • (1979) Psychometrika , vol.44 , Issue.4 , pp. 443-460
    • Olsson, U.1
  • 25
    • 84949160498 scopus 로고
    • On the robustness of factor analysis against crude classification of the observations
    • doi:10.1207/s15327906mbr1404_7
    • Olsson, U. (1979b). On the robustness of factor analysis against crude classification of the observations. Multivariate Behavioral Research, 14(4), 485-500. doi:10.1207/s15327906mbr1404_7
    • (1979) Multivariate Behavioral Research , vol.14 , Issue.4 , pp. 485-500
    • Olsson, U.1
  • 26
    • 84877137641 scopus 로고    scopus 로고
    • Replication analysis in exploratory factor analysis: What it is and why it makes your analysis better
    • Retrieved from
    • Osborne, J. W., & Fitzpatrick, D. C. (2012). Replication analysis in exploratory factor analysis: What it is and why it makes your analysis better. Practical Assessment, Research & Evaluation, 17(15), 1-8. Retrieved from http://pareonline.net/pdf/v17n15.pdf
    • (2012) Practical Assessment, Research & Evaluation , vol.17 , Issue.15 , pp. 1-8
    • Osborne, J.W.1    Fitzpatrick, D.C.2
  • 27
    • 84863304598 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • R Core Team Vienna, Austria. Retrieved from doi:10.1037/a0025697
    • R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria. Retrieved from http://www.r-project.org
    • (2013)
  • 28
    • 84866924945 scopus 로고    scopus 로고
    • Determining the number of factors to retain in an exploratory factor analysis using comparison data of known factorial structure
    • doi:10.1037/a0025697
    • Ruscio, J., & Roche, B. (2012). Determining the number of factors to retain in an exploratory factor analysis using comparison data of known factorial structure. Psychological Assessment, 24(2), 282-92. doi:10.1037/a0025697
    • (2012) Psychological Assessment , vol.24 , Issue.2 , pp. 282-292
    • Ruscio, J.1    Roche, B.2
  • 29
    • 79961215491 scopus 로고    scopus 로고
    • Current methodological considerations in exploratory and confirmatory factor analysis
    • doi:10.1177/0734282911406653
    • Schmitt, T. A. (2011). Current methodological considerations in exploratory and confirmatory factor analysis. Journal of Psychoeducational Assessment, 29(4), 304-321. doi:10.1177/0734282911406653
    • (2011) Journal of Psychoeducational Assessment , vol.29 , Issue.4 , pp. 304-321
    • Schmitt, T.A.1
  • 30
    • 0036011443 scopus 로고    scopus 로고
    • Statistical inference of minimum rank factor analysis
    • doi:10.1007/BF02294710
    • Shapiro, A., & Berge, J. M. F. (2002). Statistical inference of minimum rank factor analysis. Psychometrika, 67(1), 79-94. doi:10.1007/BF02294710
    • (2002) Psychometrika , vol.67 , Issue.1 , pp. 79-94
    • Shapiro, A.1    Berge, J.M.F.2
  • 31
    • 33845885130 scopus 로고    scopus 로고
    • Dealing with missing data in a multi-question depression scale: A comparison of imputation methods
    • doi:doi:10.1186/1471-2288-6-57
    • Shrive, F. M., Stuart, H., Quan, H., & Ghali, W. A. (2006). Dealing with missing data in a multi-question depression scale: A comparison of imputation methods. BMC Medical Research Methodology, 57. doi:doi:10.1186/1471-2288-6-57
    • (2006) BMC Medical Research Methodology , vol.57
    • Shrive, F.M.1    Stuart, H.2    Quan, H.3    Ghali, W.A.4
  • 32
    • 0003976359 scopus 로고    scopus 로고
    • Using multivariate statistics
    • (4th ed.). Boston, MA: Allyn & Bacon
    • Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Boston, MA: Allyn & Bacon.
    • (2001)
    • Tabachnick, B.G.1    Fidell, L.S.2
  • 33
    • 0000029178 scopus 로고
    • A numerical approach to the approximate and the exact minimum rank of a covariance matrix
    • Ten Berge, J. M. F., & Kiers, A. L. (1991). A numerical approach to the approximate and the exact minimum rank of a covariance matrix. Psychometrika, 56(2), 309-315.
    • (1991) Psychometrika , vol.56 , Issue.2 , pp. 309-315
    • Ten Berge, J.M.F.1    Kiers, A.L.2
  • 34
    • 79958855301 scopus 로고    scopus 로고
    • Dimensionality assessment of ordered polytomous items with parallel analysis
    • doi:10.1037/a0023353
    • Timmerman, M. E., & Lorenzo-Seva, U. (2011). Dimensionality assessment of ordered polytomous items with parallel analysis. Psychological Methods, 16(2), 209-20. doi:10.1037/a0023353
    • (2011) Psychological Methods , vol.16 , Issue.2 , pp. 209-220
    • Timmerman, M.E.1    Lorenzo-Seva, U.2
  • 35
    • 32944479235 scopus 로고    scopus 로고
    • Estimating generalizability to a latent variable common to all of a scale's indicators: A comparison of estimators for ωh
    • doi:10.1177/0146621605278814
    • Zinbarg, R. E. (2006). Estimating generalizability to a latent variable common to all of a scale's indicators: A comparison of estimators for ωh. Applied Psychological Measurement, 30(2), 121-144. doi:10.1177/0146621605278814
    • (2006) Applied Psychological Measurement , vol.30 , Issue.2 , pp. 121-144
    • Zinbarg, R.E.1
  • 36
    • 58149371334 scopus 로고
    • Comparison of five rules for determining the number of components to retain
    • doi:10.1037/0033-2909.99.3.432.
    • Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99(3), 432-442. doi:10.1037/0033-2909.99.3.432.
    • (1986) Psychological Bulletin , vol.99 , Issue.3 , pp. 432-442
    • Zwick, W.R.1    Velicer, W.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.