메뉴 건너뛰기




Volumn 29, Issue 4, 2011, Pages 304-321

Current methodological considerations in exploratory and confirmatory factor analysis

Author keywords

confirmatory factor analysis; exploratory factor analysis; factor analysis; structural equation modeling

Indexed keywords


EID: 79961215491     PISSN: 07342829     EISSN: None     Source Type: Journal    
DOI: 10.1177/0734282911406653     Document Type: Article
Times cited : (683)

References (98)
  • 2
    • 79961224925 scopus 로고    scopus 로고
    • Bayesian analysis of latent variable models using Mplus
    • Version Retrieved from
    • Asparouhov, T., & Muthén, B. (2010a). Bayesian analysis of latent variable models using Mplus. Technical Report. Version 4. Retrieved fromhttp://www.statmodel.com/download/BayesAdvantages18.pdf.
    • (2010) Technical Report , Issue.4
    • Asparouhov, T.1    Muthén, B.2
  • 4
    • 33846845117 scopus 로고    scopus 로고
    • Structural equation modelling: Adjudging model fit
    • Barrett, P. (2007). Structural equation modelling: Adjudging model fit. Personality and Individual Differences, 42, 815-824.
    • (2007) Personality and Individual Differences , vol.42 , pp. 815-824
    • Barrett, P.1
  • 5
    • 33744523182 scopus 로고    scopus 로고
    • On the performance of maximum likelihood versus means and variance adjusted weighted least squares estimation in CFA
    • Beauducel, A., & Herzberg, P.Y. (2006). On the performance of maximum likelihood versus means and variance adjusted weighted least squares estimation in CFA. Structural Equation Modeling, 13, 186-203.
    • (2006) Structural Equation Modeling , vol.13 , pp. 186-203
    • Beauducel, A.1    Herzberg, P.Y.2
  • 6
    • 33846807786 scopus 로고    scopus 로고
    • On tests and indices for evaluating structural models
    • Bentler, P.M. (2007). On tests and indices for evaluating structural models. Personality and Individual Differences, 42, 825-829.
    • (2007) Personality and Individual Differences , vol.42 , pp. 825-829
    • Bentler, P.M.1
  • 8
    • 0033416774 scopus 로고    scopus 로고
    • Structural equation modeling with small samples: Test statistics
    • Bentler, P.M., & Yuan, K.H. (1999). Structural equation modeling with small samples: Test statistics. Multivariate Behavioral Research, 34, 181-197.
    • (1999) Multivariate Behavioral Research , vol.34 , pp. 181-197
    • Bentler, P.M.1    Yuan, K.H.2
  • 11
    • 34547233564 scopus 로고    scopus 로고
    • Latent variable models under misspecification: A comparison of Two Stage Least Squares (2SLS) to Full Information Maximum Likelihood estimators (FIML)
    • Bollen, K.A., Kirby, J.B., Curran, P.J., Paxton, P.M., & Chen, F. (2007). Latent variable models under misspecification: A comparison of Two Stage Least Squares (2SLS) to Full Information Maximum Likelihood estimators (FIML). Sociological Methods and Research, 36, 48-86.
    • (2007) Sociological Methods and Research , vol.36 , pp. 48-86
    • Bollen, K.A.1    Kirby, J.B.2    Curran, P.J.3    Paxton, P.M.4    Chen, F.5
  • 13
    • 85004870441 scopus 로고
    • Asymptotically distribution-free methods for the analysis of covariance structures
    • Browne, M.W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 62-83.
    • (1984) British Journal of Mathematical and Statistical Psychology , vol.37 , pp. 62-83
    • Browne, M.W.1
  • 14
    • 0035590060 scopus 로고    scopus 로고
    • An overview of analytic rotation in exploratory factor analysis
    • Browne, M.W. (2001). An overview of analytic rotation in exploratory factor analysis. Multivariate Behavioral Research, 36, 111-150.
    • (2001) Multivariate Behavioral Research , vol.36 , pp. 111-150
    • Browne, M.W.1
  • 17
    • 42549141146 scopus 로고    scopus 로고
    • An empirical evaluation of the use of fixed cutoff points in RMSEA test statistic in structural equation models
    • Chen, F., Curran, P.J., Bollen, K.A., Kirby, J., & Paxton, P. (2008). An empirical evaluation of the use of fixed cutoff points in RMSEA test statistic in structural equation models. Sociological Methods and Research, 36, 462-494.
    • (2008) Sociological Methods and Research , vol.36 , pp. 462-494
    • Chen, F.1    Curran, P.J.2    Bollen, K.A.3    Kirby, J.4    Paxton, P.5
  • 19
    • 0037262421 scopus 로고    scopus 로고
    • A review and evaluation of exploratory factor analysis practices in organizational research
    • Conway, J.M., & Huffcut, A.I. (2003). A review and evaluation of exploratory factor analysis practices in organizational research. Organizational Research Methods, 6, 147-168.
    • (2003) Organizational Research Methods , vol.6 , pp. 147-168
    • Conway, J.M.1    Huffcut, A.I.2
  • 20
    • 84880609979 scopus 로고    scopus 로고
    • Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis
    • Retrieved from
    • Costello, A.B., & Osborne, J.W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research, and Evaluation, 10. Retrieved fromhttp://pareonline.net/pdf/v10n7.pdf.
    • (2005) Practical Assessment, Research, and Evaluation , vol.10
    • Costello, A.B.1    Osborne, J.W.2
  • 22
    • 0028439090 scopus 로고
    • Applications of standard error estimates in unrestricted factor analysis: Significance tests for factor loadings and correlations
    • Cudeck, R., & O'Dell, L.L. (1994). Applications of standard error estimates in unrestricted factor analysis: Significance tests for factor loadings and correlations. Psychological Bulletin, 115, 475-487.
    • (1994) Psychological Bulletin , vol.115 , pp. 475-487
    • Cudeck, R.1    Dell, L.L.2
  • 24
    • 79961216662 scopus 로고    scopus 로고
    • Paran. Performs Horn's parallel analysis for principal component (or factor) retention
    • Retrieved from
    • Dinno, A. (2001-2009). Paran. Performs Horn's parallel analysis for principal component (or factor) retention. Packages written for use with STATA, and for R. Retrieved fromhttp://www.doyenne.com/stata/paran.html.
    • (2001) Packages Written for Use with STATA, and for R.
    • Dinno, A.1
  • 25
    • 70449602269 scopus 로고    scopus 로고
    • Exploring the sensitivity of Horn's parallel analysis to the distributional form of simulated data
    • Dinno, A. (2009). Exploring the sensitivity of Horn's parallel analysis to the distributional form of simulated data. Multivariate Behavioral Research, 44, 362-388.
    • (2009) Multivariate Behavioral Research , vol.44 , pp. 362-388
    • Dinno, A.1
  • 28
    • 77953909824 scopus 로고    scopus 로고
    • Esposito Vinzi, V., Chin, W. W., Henseler, J., & Wang, H. (Eds.), New York, NY: Springer
    • Esposito Vinzi, V., Chin, W. W., Henseler, J., & Wang, H. (Eds.). (2010). Handbook of partial least squares. New York, NY: Springer.
    • (2010) Handbook of Partial Least Squares
  • 29
  • 30
    • 10844245499 scopus 로고    scopus 로고
    • An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data
    • Flora, D.B., & Curran, P.J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466-491.
    • (2004) Psychological Methods , vol.9 , pp. 466-491
    • Flora, D.B.1    Curran, P.J.2
  • 31
    • 85021394779 scopus 로고
    • The application of exploratory factor analysis in applied psychology: A critical review and analysis
    • Ford, J.K., MacCallum, R.C., & Tait, M. (1986). The application of exploratory factor analysis in applied psychology: A critical review and analysis. Personnel Psychology, 39, 291-314.
    • (1986) Personnel Psychology , vol.39 , pp. 291-314
    • Ford, J.K.1    MacCallum, R.C.2    Tait, M.3
  • 32
    • 78650468393 scopus 로고    scopus 로고
    • Factor analysis with ordinal indicators: A Monte Carlo study comparing DWLS and ULS estimation
    • Forero, C., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2009). Factor analysis with ordinal indicators: A Monte Carlo study comparing DWLS and ULS estimation. Structural Equation Modeling, 16, 625-641.
    • (2009) Structural Equation Modeling , vol.16 , pp. 625-641
    • Forero, C.1    Maydeu-Olivares, A.2    Gallardo-Pujol, D.3
  • 33
    • 79851478075 scopus 로고    scopus 로고
    • Viability of exploratory factor analysis as a precursor to confirmatory factor analysis
    • Gerbing, D.W., & Hamilton, J.G. (1996). Viability of exploratory factor analysis as a precursor to confirmatory factor analysis. Structural Equation Modeling, 3, 62-72.
    • (1996) Structural Equation Modeling , vol.3 , pp. 62-72
    • Gerbing, D.W.1    Hamilton, J.G.2
  • 34
    • 84973751080 scopus 로고
    • An improvement on Horn's parallel analysis methodology for selecting the correct number of factors to retain
    • Glorfeld, L.W. (1995). An improvement on Horn's parallel analysis methodology for selecting the correct number of factors to retain. Educational and Psychological Measurement, 55, 377-393.
    • (1995) Educational and Psychological Measurement , vol.55 , pp. 377-393
    • Glorfeld, L.W.1
  • 35
    • 49249096327 scopus 로고
    • Casual inference and causal explanation
    • In R. McLaughlin (Ed.), Boston, MA: D. Reidel Publishing Company
    • Glymour, C. (1982). Casual inference and causal explanation. In R. McLaughlin (Ed.), What? Where? When? Why? Essays on induction, space, and time,explanation (pp. 179-191). Boston, MA: D. Reidel Publishing Company.
    • (1982) What? Where? When? Why? Essays on Induction, Space, and Time,Explanation , pp. 179-191
    • Glymour, C.1
  • 36
    • 0004125042 scopus 로고
    • (2nd ed.), Hillsdale, NJ: Lawrence Erlbaum
    • Gorsuch, R.L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum.
    • (1983) Factor Analysis
    • Gorsuch, R.L.1
  • 37
    • 0030979665 scopus 로고    scopus 로고
    • Exploratory factor analysis: Its role in item analysis
    • Gorsuch, R.L. (1997). Exploratory factor analysis: Its role in item analysis. Journal of Personality Assessment, 68, 532-560.
    • (1997) Journal of Personality Assessment , vol.68 , pp. 532-560
    • Gorsuch, R.L.1
  • 38
    • 0023975203 scopus 로고
    • Relation of sample size to the stability of component patterns
    • Guadagnoli, E., & Velicer, W.F. (1988). Relation of sample size to the stability of component patterns. Psychological Bulletin, 103, 265-275.
    • (1988) Psychological Bulletin , vol.103 , pp. 265-275
    • Guadagnoli, E.1    Velicer, W.F.2
  • 39
    • 34548060110 scopus 로고    scopus 로고
    • On the likelihood ratio test for the number of factors in exploratory factor analysis
    • Hayashi, K., Bentler, P.M., & Yuan, K.H. (2007). On the likelihood ratio test for the number of factors in exploratory factor analysis. Structural Equation Modeling, 14, 505-526.
    • (2007) Structural Equation Modeling , vol.14 , pp. 505-526
    • Hayashi, K.1    Bentler, P.M.2    Yuan, K.H.3
  • 40
    • 2342495760 scopus 로고    scopus 로고
    • Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis
    • Hayton, J.C., Allen, D.G., & Scarpello, V. (2004). Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7, 191-205.
    • (2004) Organizational Research Methods , vol.7 , pp. 191-205
    • Hayton, J.C.1    Allen, D.G.2    Scarpello, V.3
  • 41
    • 33646503263 scopus 로고    scopus 로고
    • Use of exploratory factor analysis in published research: Common errors and some comment on improved practice
    • Henson, R.K., & Roberts, J.K. (2006). Use of exploratory factor analysis in published research: Common errors and some comment on improved practice. Educational and Psychological Measurement, 66, 393-416.
    • (2006) Educational and Psychological Measurement , vol.66 , pp. 393-416
    • Henson, R.K.1    Roberts, J.K.2
  • 42
    • 72749123769 scopus 로고    scopus 로고
    • Polychoric versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables
    • Holgado-Tello, F.P., Chacón-Moscoso, S., Barbero-García, I., & Vila-Abad, E. (2010). Polychoric versus Pearson correlations in exploratory and confirmatory factor analysis of ordinal variables. Quality and Quantity, 44, 153-166.
    • (2010) Quality and Quantity , vol.44 , pp. 153-166
    • Holgado-Tello, F.P.1    Chacón-Moscoso, S.2    Barbero-García, I.3    Vila-Abad, E.4
  • 43
    • 0010060639 scopus 로고
    • A Study in Factor Analysis: The Stability of a Bifactor Solution
    • no. 48, Chicago: University of Chicago Press
    • Holzinger, K., & Swineford, F. (1939). A study in factor analysis: The stability of a bifactor solution. Supplementary Educational Monograph, no. 48. Chicago: University of Chicago Press.
    • (1939) Supplementary Educational Monograph
    • Holzinger, K.1    Swineford, F.2
  • 44
    • 8644267207 scopus 로고
    • A rationale and a test for the number of factors in factor analysis
    • Horn, J.L. (1965). A rationale and a test for the number of factors in factor analysis. Psychometrika, 30, 179-185.
    • (1965) Psychometrika , vol.30 , pp. 179-185
    • Horn, J.L.1
  • 45
    • 0032262444 scopus 로고    scopus 로고
    • Fit indices in covariance structure modeling: Sensitivity to underparameterized model specification
    • Hu, L., & Bentler, P.M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model specification. Psychological Methods, 3, 424-453.
    • (1998) Psychological Methods , vol.3 , pp. 424-453
    • Hu, L.1    Bentler, P.M.2
  • 46
    • 67650706330 scopus 로고    scopus 로고
    • Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives
    • Hu, L., & Bentler, P.M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1-55.
    • (1999) Structural Equation Modeling , vol.6 , pp. 1-55
    • Hu, L.1    Bentler, P.M.2
  • 47
    • 33847293669 scopus 로고    scopus 로고
    • The effect of the number of observations per parameter in misspecified confirmatory factor analytic models
    • Jackson, D.L. (2007). The effect of the number of observations per parameter in misspecified confirmatory factor analytic models. Structural Equation Modeling: A Multidisciplinary Journal, 14, 48-76.
    • (2007) Structural Equation Modeling: A Multidisciplinary Journal , vol.14 , pp. 48-76
    • Jackson, D.L.1
  • 48
    • 64649086851 scopus 로고    scopus 로고
    • Reporting practices in confirmatory factor analysis: A review and some recommendations
    • Jackson, D.L., Gillaspy, J.A., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: A review and some recommendations. Psychological Methods, 14, 6-23.
    • (2009) Psychological Methods , vol.14 , pp. 6-23
    • Jackson, D.L.1    Gillaspy, J.A.2    Purc-Stephenson, R.3
  • 49
    • 70449597142 scopus 로고    scopus 로고
    • Rotation methods, algorithms, and standard errors
    • In R. Cudeck & R. C. MacCallum (Eds.), Mahwah, NJ: Lawrence Erlbaum
    • Jennrich, R.I. (2007). Rotation methods, algorithms, and standard errors. In R. Cudeck & R. C. MacCallum (Eds.), Factor analysis at 100: Historical developments and future directions (pp. 315-335). Mahwah, NJ: Lawrence Erlbaum.
    • (2007) Factor Analysis at 100: Historical Developments and Future Directions , pp. 315-335
    • Jennrich, R.I.1
  • 52
    • 0043109420 scopus 로고    scopus 로고
    • Sample size for multiple regression: Obtaining regression coefficients that are accurate, not simply significant
    • Kelley, K., & Maxwell, S.E. (2003). Sample size for multiple regression: Obtaining regression coefficients that are accurate, not simply significant. Psychological Methods, 8, 305-321.
    • (2003) Psychological Methods , vol.8 , pp. 305-321
    • Kelley, K.1    Maxwell, S.E.2
  • 55
    • 64749097255 scopus 로고    scopus 로고
    • Evaluating estimation methods for ordinal data in structural equation modeling
    • Lei, P.W. (2009). Evaluating estimation methods for ordinal data in structural equation modeling. Quality & Quantity, 43, 495-507.
    • (2009) Quality & Quantity , vol.43 , pp. 495-507
    • Lei, P.W.1
  • 56
    • 48149095689 scopus 로고    scopus 로고
    • A modified procedure for parallel analysis for ordered categorical data
    • Liu, O.L., & Rijmen, F. (2008). A modified procedure for parallel analysis for ordered categorical data. Behavior Research Methods, 40, 556-562.
    • (2008) Behavior Research Methods , vol.40 , pp. 556-562
    • Liu, O.L.1    Rijmen, F.2
  • 57
    • 0013118140 scopus 로고    scopus 로고
    • Power analysis and determination of sample size for covariance structure modeling
    • MacCallum, R.C., Browne, M.W., & Sugawara, H.M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130-149.
    • (1996) Psychological Methods , vol.1 , pp. 130-149
    • MacCallum, R.C.1    Browne, M.W.2    Sugawara, H.M.3
  • 58
    • 75149145898 scopus 로고    scopus 로고
    • The issue of isopower in power analysis for tests of structural equation models
    • MacCallum, R.C., Lee, T., & Browne, M.W. (2010). The issue of isopower in power analysis for tests of structural equation models. Structural Equation Modeling, 17, 23-41.
    • (2010) Structural Equation Modeling , vol.17 , pp. 23-41
    • MacCallum, R.C.1    Lee, T.2    Browne, M.W.3
  • 59
    • 0001348083 scopus 로고
    • Model modifications in covariance structure analysis: The problem of capitalization on chance
    • MacCallum, R.C., Roznowski, M., & Necowitz, L.B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111, 490-504.
    • (1992) Psychological Bulletin , vol.111 , pp. 490-504
    • MacCallum, R.C.1    Roznowski, M.2    Necowitz, L.B.3
  • 62
    • 0032221781 scopus 로고    scopus 로고
    • Is more ever too much? The number of indicators per factor in confirmatory factor analysis
    • Marsh, H.W., Hau, K.T., Balla, J.R., & Grayson, D. (1998). Is more ever too much? The number of indicators per factor in confirmatory factor analysis. Multivariate Behavioral Research, 33, 181-220.
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 181-220
    • Marsh, H.W.1    Hau, K.T.2    Balla, J.R.3    Grayson, D.4
  • 64
    • 31344447082 scopus 로고    scopus 로고
    • Goodness of fit in structural equation models
    • In A. Maydeu-Olivares & J. J. McArdle (Eds.), Mahwah, NJ: Lawrence Erlbaum
    • Marsh, H.W., Hau, K.T., & Grayson, D. (2005). Goodness of fit in structural equation models. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary psychometrics (pp. 275-340). Mahwah, NJ: Lawrence Erlbaum.
    • (2005) Contemporary Psychometrics , pp. 275-340
    • Marsh, H.W.1    Hau, K.T.2    Grayson, D.3
  • 65
    • 3042808205 scopus 로고    scopus 로고
    • Search of golden rules: Comment on hypothesis testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler's (1999) findings
    • Marsh, H.W., Hau, K.T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler's (1999) findings. Structural Equation Modeling, 11, 320-341.
    • (2004) Structural Equation Modeling , vol.11 , pp. 320-341
    • Marsh, H.W.1    Hau, K.T.2    Wen, Z.3
  • 66
    • 79961217818 scopus 로고    scopus 로고
    • Methodological-measurement fruitfulness of exploratory structural equation modeling (ESEM): New approaches to key substantive issues in motivation and engagement
    • Marsh, H.W., Liem, G.A.D., Martin, A.J., Morin, A.J.S., & Nagengast, B. (2011). Methodological-measurement fruitfulness of exploratory structural equation modeling (ESEM): New approaches to key substantive issues in motivation and engagement. Special issue in the Journal of Psychoeducational Assessment.
    • (2011) Special Issue in the Journal of Psychoeducational Assessment
    • Marsh, H.W.1    Liem, G.A.D.2    Martin, A.J.3    Morin, A.J.S.4    Nagengast, B.5
  • 67
    • 84951419692 scopus 로고
    • Principles versus principals of structural factor-analyses
    • McArdle, J.J. (1990). Principles versus principals of structural factor-analyses. Multivariate Behavioral Research, 25, 81-87.
    • (1990) Multivariate Behavioral Research , vol.25 , pp. 81-87
    • McArdle, J.J.1
  • 68
    • 0001666855 scopus 로고
    • Choosing a multivariate model: Noncentrality and goodness-offit
    • McDonald, R.P., & Marsh, H.W. (1990). Choosing a multivariate model: Noncentrality and goodness-offit. Psychological Bulletin, 107, 247-255.
    • (1990) Psychological Bulletin , vol.107 , pp. 247-255
    • McDonald, R.P.1    Marsh, H.W.2
  • 69
    • 33846820562 scopus 로고    scopus 로고
    • Rethinking fit assessment in structural equation modelling: A commentary and elaboration on Barrett (2007)
    • McIntosh, C. (2007). Rethinking fit assessment in structural equation modelling: A commentary and elaboration on Barrett (2007). Personality and Individual Differences, 42, 859-857.
    • (2007) Personality and Individual Differences , vol.42 , pp. 857-859
    • McIntosh, C.1
  • 72
    • 84859645638 scopus 로고    scopus 로고
    • (Technical Report). Version 3. Retrieved from
    • Muthén, B. (2010). Bayesian analysis in Mplus: A brief introduction. (Technical Report). Version 3. Retrieved fromhttp://www.statmodel.com/download/IntroBayesVersion%203.pdf.
    • (2010) Bayesian Analysis in Mplus: A Brief Introduction
    • Muthén, B.1
  • 75
    • 0345040656 scopus 로고    scopus 로고
    • How to use a Monte Carlo study to decide on sample size and determine power
    • Muthén, L.K., & Muthén, B.O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 4, 599-620.
    • (2002) Structural Equation Modeling , vol.4 , pp. 599-620
    • Muthén, L.K.1    Muthén, B.O.2
  • 77
    • 0034242321 scopus 로고    scopus 로고
    • SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test
    • O'Connor, B.P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test. Behavior Research Methods, Instruments, & Computers, 32, 396-402.
    • (2000) Behavior Research Methods, Instruments, & Computers , vol.32 , pp. 396-402
    • O'Connor, B.P.1
  • 78
    • 0142168273 scopus 로고    scopus 로고
    • Repairing Tom Swift's electric factor analysis machine
    • Preacher, K.J., & Maccallum, R.C. (2003). Repairing Tom Swift's electric factor analysis machine. Understanding Statistics, 2, 13-43.
    • (2003) Understanding Statistics , vol.2 , pp. 13-43
    • Preacher, K.J.1    Maccallum, R.C.2
  • 79
    • 79951480123 scopus 로고    scopus 로고
    • Vienna, Austria: R Foundation for Statistical Computing, Development Core Team
    • R Development Core Team. (2010). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
    • (2010) R: A Language and Environment for Statistical Computing
  • 81
    • 72049100868 scopus 로고    scopus 로고
    • Conceptualizing and testing formative constructs: Tutorial and annotated example
    • Roberts, N., & Thatcher, J. (2009). Conceptualizing and testing formative constructs: Tutorial and annotated example. ACM SIGMIS Database archive, 40, 9-39.
    • (2009) ACM SIGMIS Database Archive , vol.40 , pp. 9-39
    • Roberts, N.1    Thatcher, J.2
  • 82
    • 24644458231 scopus 로고    scopus 로고
    • Search of underlying dimensions: the use (and abuse) of factor analysis in Personality and Social Psychology Bulletin
    • Russell, D. (2002). In search of underlying dimensions: the use (and abuse) of factor analysis in Personality and Social Psychology Bulletin. Personality and social psychology bulletin, 28, 1629-1646.
    • (2002) Personality and Social Psychology Bulletin , vol.28 , pp. 1629-1646
    • Russell, D.1
  • 83
    • 77953915319 scopus 로고    scopus 로고
    • Testing structural equation models or detection of misspecifications?
    • Saris, W.E., Satorra, A., & van der Veld, W. (2009). Testing structural equation models or detection of misspecifications? Structural Equation Modeling, 16, 561-582.
    • (2009) Structural Equation Modeling , vol.16 , pp. 561-582
    • Saris, W.E.1    Satorra, A.2    van der Veld, W.3
  • 84
    • 77951202741 scopus 로고    scopus 로고
    • A Comparative investigation of rotation criteria within exploratory factor analysis
    • Sass, D.A., & Schmitt, T.A. (2010). A Comparative investigation of rotation criteria within exploratory factor analysis. Multivariate Behavioral Research, 45, 1-33.
    • (2010) Multivariate Behavioral Research , vol.45 , pp. 1-33
    • Sass, D.A.1    Schmitt, T.A.2
  • 85
    • 0002813537 scopus 로고
    • Power of the likelihood ratio test in covariance structure analysis
    • Satorra, A., & Saris, W.E. (1985). Power of the likelihood ratio test in covariance structure analysis. Psychometrika, 50, 83-89.
    • (1985) Psychometrika , vol.50 , pp. 83-89
    • Satorra, A.1    Saris, W.E.2
  • 87
    • 79951696257 scopus 로고    scopus 로고
    • Rotation criteria and hypothesis testing for exploratory factor analysis: Implications for factor pattern loadings and interfactor correlations
    • Schmitt, T.A., & Sass, D.A. (2011). Rotation criteria and hypothesis testing for exploratory factor analysis: Implications for factor pattern loadings and interfactor correlations. Educational and Psychological Measurement, 71, 95-113.
    • (2011) Educational and Psychological Measurement , vol.71 , pp. 95-113
    • Schmitt, T.A.1    Sass, D.A.2
  • 89
    • 84993683893 scopus 로고    scopus 로고
    • Factor analytic evidence for the construct validity of scores: A historical overview and some guidelines
    • Thompson, B., & Daniel, L.G. (1996). Factor analytic evidence for the construct validity of scores: A historical overview and some guidelines. Educational and Psychological Measurement, 56, 197-208.
    • (1996) Educational and Psychological Measurement , vol.56 , pp. 197-208
    • Thompson, B.1    Daniel, L.G.2
  • 91
    • 33846810130 scopus 로고    scopus 로고
    • Introduction to special issue on Structural Equation Modeling
    • Vernon, T., & Eysenck, S. (2007). Introduction to special issue on Structural Equation Modeling. Personality and Individual Differences, 42, 813.
    • (2007) Personality and Individual Differences , vol.42 , pp. 813
    • Vernon, T.1    Eysenck, S.2
  • 92
    • 84925830379 scopus 로고    scopus 로고
    • Common factors versus components: Principals and principles, errors and misconceptions
    • In R. Cudeck & R. C. MacCallum (Eds.), Mahwah, NJ: Lawrence Erlbaum
    • Widaman, K.F. (2007). Common factors versus components: Principals and principles, errors and misconceptions. In R. Cudeck & R. C. MacCallum (Eds.), Factor analysis at 100: Historical developments and future directions (pp. 177-203). Mahwah, NJ: Lawrence Erlbaum.
    • (2007) Factor Analysis at 100: Historical Developments and Future Directions , pp. 177-203
    • Widaman, K.F.1
  • 93
    • 33750483305 scopus 로고    scopus 로고
    • Scale development research: A content analysis and recommendations for best practices
    • Worthington, R.W., & Whittaker, T.A. (2006). Scale development research: A content analysis and recommendations for best practices. The Counseling Psychologist, 34, 806-838.
    • (2006) The Counseling Psychologist , vol.34 , pp. 806-838
    • Worthington, R.W.1    Whittaker, T.A.2
  • 94
    • 84893597065 scopus 로고    scopus 로고
    • Assessing unidimensionality: A comparison of Rasch Modeling, Parallel Analysis, and TETRAD
    • Retrieved from
    • Yu, C.H., Popp, S.O., DiGangi, S., & Jannasch-Pennell, A. (2007). Assessing unidimensionality: A comparison of Rasch Modeling, Parallel Analysis, and TETRAD. Practical Assessment, Research, and Evaluation, 12. Retrieved fromhttp://pareonline.net/pdf/v12n14.pdf.
    • (2007) Practical Assessment, Research, and Evaluation , vol.12
    • Yu, C.H.1    Popp, S.O.2    DiGangi, S.3    Jannasch-Pennell, A.4
  • 96
    • 6344228784 scopus 로고    scopus 로고
    • On chi-square difference and z-tests in mean and covariance structure analysis when the base model is misspecified
    • Yuan, K.H., & Bentler, P.M. (2004). On chi-square difference and z-tests in mean and covariance structure analysis when the base model is misspecified. Educational and Psychological Measurement, 64, 737-757.
    • (2004) Educational and Psychological Measurement , vol.64 , pp. 737-757
    • Yuan, K.H.1    Bentler, P.M.2
  • 97
    • 0038795072 scopus 로고    scopus 로고
    • Bootstrap approach to inference and power analysis based on three statistics for covariance structure models
    • Yuan, K.-H., & Hayashi, K. (2003). Bootstrap approach to inference and power analysis based on three statistics for covariance structure models. British Journal of Mathematical and Statistical Psychology, 56, 93-110.
    • (2003) British Journal of Mathematical and Statistical Psychology , vol.56 , pp. 93-110
    • Yuan, K.-H.1    Hayashi, K.2
  • 98
    • 58149371334 scopus 로고
    • Comparison of five rules for determining the number of components to retain
    • Zwick, W.R., & Velicer, W.F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99, 432-442.
    • (1986) Psychological Bulletin , vol.99 , pp. 432-442
    • Zwick, W.R.1    Velicer, W.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.