메뉴 건너뛰기




Volumn 22, Issue , 2014, Pages 249-260

A new approach for unit commitment problem via binary gravitational search algorithm

Author keywords

Binary gravitational search algorithm; Economic load dispatch; Heuristic strategy; Local mutation; Unit commitment

Indexed keywords

HEURISTIC ALGORITHMS; LEARNING ALGORITHMS; MODULAR ROBOTS; REPAIR; SCHEDULING;

EID: 84902650480     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.05.029     Document Type: Article
Times cited : (99)

References (40)
  • 1
    • 84881636482 scopus 로고    scopus 로고
    • A primary unit commitment approach with a modification process
    • M. Amiri, and S. Khanmohammadi A primary unit commitment approach with a modification process Appl. Soft Comput. 13 2 2013 1007 1015
    • (2013) Appl. Soft Comput. , vol.13 , Issue.2 , pp. 1007-1015
    • Amiri, M.1    Khanmohammadi, S.2
  • 2
    • 31344459621 scopus 로고    scopus 로고
    • Emerging solution of large-scale unit commitment problem by Stochastic Priority List
    • DOI 10.1016/j.epsr.2005.07.002, PII S0378779605001975
    • T. Senjyu, T. Miyagi, A. Saber, N. Urasaki, and T. Funabashi Emerging solution of large-scale unit commitment problem by stochastic priority list Electric Power Syst. Res. 76 5 2006 283 292 (Pubitemid 43144638)
    • (2006) Electric Power Systems Research , vol.76 , Issue.5 , pp. 283-292
    • Senjyu, T.1    Miyagi, T.2    Saber, A.Y.3    Urasaki, N.4    Funabashi, T.5
  • 3
    • 61449087265 scopus 로고    scopus 로고
    • A dynamic regrouping based sequential dynamic programming algorithm for unit commitment of combined heat and power systems
    • A. Rong, H. Hakonen, and R. Lahdelma A dynamic regrouping based sequential dynamic programming algorithm for unit commitment of combined heat and power systems Energy Convers. Manage. 50 4 2009 1108 1115
    • (2009) Energy Convers. Manage. , vol.50 , Issue.4 , pp. 1108-1115
    • Rong, A.1    Hakonen, H.2    Lahdelma, R.3
  • 4
    • 0020707286 scopus 로고
    • A branch-and-bound algorithm for unit commitment
    • A. Cohen, and M. Yoshimura A branch-and-bound algorithm for unit commitment IEEE Trans. Power Syst. 102 1 1983 444 451
    • (1983) IEEE Trans. Power Syst. , vol.102 , Issue.1 , pp. 444-451
    • Cohen, A.1    Yoshimura, M.2
  • 5
    • 84859978453 scopus 로고    scopus 로고
    • Designing time-of-use program based on stochastic security constrained unit commitment considering reliability index
    • M. Nikzad, B. Mozafari, M. Bashirvand, S. Solaymani, and A. Ranjbar Designing time-of-use program based on stochastic security constrained unit commitment considering reliability index Energy 41 1 2012 541 548
    • (2012) Energy , vol.41 , Issue.1 , pp. 541-548
    • Nikzad, M.1    Mozafari, B.2    Bashirvand, M.3    Solaymani, S.4    Ranjbar, A.5
  • 6
    • 1442264390 scopus 로고    scopus 로고
    • Unit commitment by enhanced adaptive Lagrangian relaxation
    • W. Ongsakul, and N. Petcharaks Unit commitment by enhanced adaptive Lagrangian relaxation IEEE Trans. Power Syst. 19 1 2004 620 628
    • (2004) IEEE Trans. Power Syst. , vol.19 , Issue.1 , pp. 620-628
    • Ongsakul, W.1    Petcharaks, N.2
  • 7
    • 77955468785 scopus 로고    scopus 로고
    • Optimal self-scheduling of hydro producer in the electricity market
    • X. Yuan, Y. Wang, J. Xie, X. Qi, H. Nie, and A. Su Optimal self-scheduling of hydro producer in the electricity market Energy Convers. Manage. 51 12 2010 2523 2530
    • (2010) Energy Convers. Manage. , vol.51 , Issue.12 , pp. 2523-2530
    • Yuan, X.1    Wang, Y.2    Xie, J.3    Qi, X.4    Nie, H.5    Su, A.6
  • 8
    • 70349456523 scopus 로고    scopus 로고
    • Improved merit order and augmented Lagrange Hopfield network for short term hydrothermal scheduling
    • V. Dieu, and W. Ongsakul Improved merit order and augmented Lagrange Hopfield network for short term hydrothermal scheduling Energy Convers. Manage. 50 12 2009 3015 3023
    • (2009) Energy Convers. Manage. , vol.50 , Issue.12 , pp. 3015-3023
    • Dieu, V.1    Ongsakul, W.2
  • 9
    • 78751606928 scopus 로고    scopus 로고
    • Evolving ant colony optimization based unit commitment
    • K. Vaisakh, and L. Srinivas Evolving ant colony optimization based unit commitment Appl. Soft Comput. 11 2 2011 2863 2870
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 2863-2870
    • Vaisakh, K.1    Srinivas, L.2
  • 10
    • 81155132319 scopus 로고    scopus 로고
    • Nodal ant colony optimization for solving profit based unit commitment problem for GENCOs
    • C. Columbus, K. Chandrasekaran, and S. Simon Nodal ant colony optimization for solving profit based unit commitment problem for GENCOs Appl. Soft Comput. 12 1 2012 145 160
    • (2012) Appl. Soft Comput. , vol.12 , Issue.1 , pp. 145-160
    • Columbus, C.1    Chandrasekaran, K.2    Simon, S.3
  • 12
    • 70450260674 scopus 로고    scopus 로고
    • Solution to security constrained unit commitment problem using genetic algorithm
    • V. Kumar, and M. Mohan Solution to security constrained unit commitment problem using genetic algorithm Electrical Power Energy Syst. 32 2 2010 117 125
    • (2010) Electrical Power Energy Syst. , vol.32 , Issue.2 , pp. 117-125
    • Kumar, V.1    Mohan, M.2
  • 13
    • 2542640865 scopus 로고    scopus 로고
    • A solution to the unit-commitment problem using integer-coded genetic algorithm
    • I. Damousis, A. Bakirtzis, and P. Dokopoulos A solution to the unit-commitment problem using integer-coded genetic algorithm IEEE Trans. Power Syst. 19 2 2004 1165 1172
    • (2004) IEEE Trans. Power Syst. , vol.19 , Issue.2 , pp. 1165-1172
    • Damousis, I.1    Bakirtzis, A.2    Dokopoulos, P.3
  • 15
    • 0034186815 scopus 로고    scopus 로고
    • Unit commitment by Lagrangian relaxation and genetic algorithms
    • C. Cheng, and C. Liu Unit commitment by Lagrangian relaxation and genetic algorithms IEEE Trans. Power Syst. 15 2 2000 707 714
    • (2000) IEEE Trans. Power Syst. , vol.15 , Issue.2 , pp. 707-714
    • Cheng, C.1    Liu, C.2
  • 16
    • 33645983646 scopus 로고    scopus 로고
    • A matrix real-coded genetic algorithm to the unit commitment problem
    • L. Sun, Y. Zhang, and C. Jiang A matrix real-coded genetic algorithm to the unit commitment problem Electric Power Syst. Res. 76 9 2006 716 728
    • (2006) Electric Power Syst. Res. , vol.76 , Issue.9 , pp. 716-728
    • Sun, L.1    Zhang, Y.2    Jiang, C.3
  • 17
    • 0033222003 scopus 로고    scopus 로고
    • Evolutionary programming solution to the unit commitment problem
    • DOI 10.1109/59.801925
    • K. Juste, H. Kita, and E. Tanaka An evolutionary programming solution to the unit commitment problem IEEE Trans. Power Syst. 14 4 1999 1452 1459 (Pubitemid 32082808)
    • (1999) IEEE Transactions on Power Systems , vol.14 , Issue.4 , pp. 1452-1459
    • Juste, K.A.1    Kita, H.2    Tanaka, E.3    Hasegawa, J.4
  • 18
    • 0036497198 scopus 로고    scopus 로고
    • A seeded memetic algorithm for large unit commitment problems
    • DOI 10.1023/A:1017960507177
    • V. Jorge, and A. Smith A seeded memetic algorithm for large unit commitment problems J. Heuristics 8 2 2002 173 195 (Pubitemid 34249457)
    • (2002) Journal of Heuristics , vol.8 , Issue.2 , pp. 173-195
    • Valenzuela, J.1    Smith, A.E.2
  • 19
    • 45849153061 scopus 로고    scopus 로고
    • Improved self-adaptive chaotic genetic algorithm for hydrogeneration scheduling
    • DOI 10.1061/(ASCE)0733-9496(2008)134:4(319)
    • X. Yuan, Y. Zhang, and Y. Yuan Improved self-adaptive chaotic genetic algorithm for hydrogeneration scheduling J. Water Resour. Plan. Manage. ASCE 134 4 2008 319 325 (Pubitemid 351877707)
    • (2008) Journal of Water Resources Planning and Management , vol.134 , Issue.4 , pp. 319-325
    • Yuan, X.1    Zhang, Y.2    Yuan, Y.3
  • 20
    • 32144445924 scopus 로고    scopus 로고
    • Unit commitment by an enhanced simulated annealing algorithm
    • DOI 10.1109/TPWRS.2005.860922
    • N. Simopoulos, S. Kavatza, and C. Vournas Unit commitment by an enhanced simulated annealing algorithm IEEE Trans. Power Syst. 21 1 2006 68 76 (Pubitemid 43204704)
    • (2006) IEEE Transactions on Power Systems , vol.21 , Issue.1 , pp. 68-76
    • Simopoulos, D.N.1    Kavatza, S.D.2    Vournas, C.D.3
  • 21
    • 0037272967 scopus 로고    scopus 로고
    • Using GRASP to solve the unit commitment problem
    • A. Viana, J. Sausa, and M. Matos Using GRASP to solve the unit commitment problem Ann. Oper. Res. 120 1 2003 117 132
    • (2003) Ann. Oper. Res. , vol.120 , Issue.1 , pp. 117-132
    • Viana, A.1    Sausa, J.2    Matos, M.3
  • 22
    • 42749096409 scopus 로고    scopus 로고
    • Fast solutions for UC problems by a new metaheuristic approach
    • A. Viana, J. Sousa, and M. Matos Fast solutions for UC problems by a new metaheuristic approach Electric Power Syst. Res. 78 8 2008 1385 1395
    • (2008) Electric Power Syst. Res. , vol.78 , Issue.8 , pp. 1385-1395
    • Viana, A.1    Sousa, J.2    Matos, M.3
  • 23
    • 68349127392 scopus 로고    scopus 로고
    • Bacterial foraging-based solution to the unit-commitment problem
    • M. Eslamian, S. Hosseinian, and B. Vahidi Bacterial foraging-based solution to the unit-commitment problem IEEE Trans. Power Syst. 24 3 2009 1478 1488
    • (2009) IEEE Trans. Power Syst. , vol.24 , Issue.3 , pp. 1478-1488
    • Eslamian, M.1    Hosseinian, S.2    Vahidi, B.3
  • 24
    • 67650257171 scopus 로고    scopus 로고
    • Application of enhanced discrete differential evolution approach to unit commitment problem
    • X. Yuan, A. Su, H. Nie, Y. Yuan, and L. Wang Application of enhanced discrete differential evolution approach to unit commitment problem Energy Convers. Manage. 50 9 2009 2449 2456
    • (2009) Energy Convers. Manage. , vol.50 , Issue.9 , pp. 2449-2456
    • Yuan, X.1    Su, A.2    Nie, H.3    Yuan, Y.4    Wang, L.5
  • 25
    • 54049151913 scopus 로고    scopus 로고
    • Hydrothermal scheduling using chaotic hybrid differential evolution
    • X. Yuan, B. Cao, B. Yang, and Y. Yuan Hydrothermal scheduling using chaotic hybrid differential evolution Energy Convers. Manage. 49 12 2008 3627 3633
    • (2008) Energy Convers. Manage. , vol.49 , Issue.12 , pp. 3627-3633
    • Yuan, X.1    Cao, B.2    Yang, B.3    Yuan, Y.4
  • 26
    • 78049274107 scopus 로고    scopus 로고
    • Solution to profit based unit commitment problem using particle swarm optimization
    • I. Raglend, C. Raghuveer, G. Avinash, N. Padhyc, and D. Kothari Solution to profit based unit commitment problem using particle swarm optimization Appl. Soft Comput. 10 4 2010 1247 1256
    • (2010) Appl. Soft Comput. , vol.10 , Issue.4 , pp. 1247-1256
    • Raglend, I.1    Raghuveer, C.2    Avinash, G.3    Padhyc, N.4    Kothari, D.5
  • 27
    • 33745683834 scopus 로고    scopus 로고
    • An improved particle swarm optimization algorithm for unit commitment
    • B. Zhao, C. Guo, B. Bai, and Y. Cao An improved particle swarm optimization algorithm for unit commitment Electrical Power Energy Syst. 28 7 2006 482 490
    • (2006) Electrical Power Energy Syst. , vol.28 , Issue.7 , pp. 482-490
    • Zhao, B.1    Guo, C.2    Bai, B.3    Cao, Y.4
  • 28
    • 67349114843 scopus 로고    scopus 로고
    • Unit commitment considering generator outages through a mixed-integer particle swarm optimization algorithm
    • L. Wang, and C. Singh Unit commitment considering generator outages through a mixed-integer particle swarm optimization algorithm Appl. Soft Comput. 9 3 2009 947 953
    • (2009) Appl. Soft Comput. , vol.9 , Issue.3 , pp. 947-953
    • Wang, L.1    Singh, C.2
  • 29
    • 77956180942 scopus 로고    scopus 로고
    • A new three-stage method for solving unit commitment problem
    • S. Khanmohammadi, M. Amiri, and M. Haque A new three-stage method for solving unit commitment problem Energy 35 7 2010 3072 3080
    • (2010) Energy , vol.35 , Issue.7 , pp. 3072-3080
    • Khanmohammadi, S.1    Amiri, M.2    Haque, M.3
  • 30
    • 78649490854 scopus 로고    scopus 로고
    • Unit commitment with energy dispatch using a computationally efficient encoding structure
    • C. Kuo, C. Lee, and Y. Sheim Unit commitment with energy dispatch using a computationally efficient encoding structure Energy Convers. Manage. 52 3 2011 1575 1582
    • (2011) Energy Convers. Manage. , vol.52 , Issue.3 , pp. 1575-1582
    • Kuo, C.1    Lee, C.2    Sheim, Y.3
  • 31
    • 78651506824 scopus 로고    scopus 로고
    • Unit commitment problem using enhanced particle swarm optimization algorithm
    • X. Yuan, A. Su, H. Nie, Y. Yuan, and L. Wang Unit commitment problem using enhanced particle swarm optimization algorithm Soft Comput. 15 1 2011 139 148
    • (2011) Soft Comput. , vol.15 , Issue.1 , pp. 139-148
    • Yuan, X.1    Su, A.2    Nie, H.3    Yuan, Y.4    Wang, L.5
  • 32
    • 84863752816 scopus 로고    scopus 로고
    • Unit commitment strategy of thermal generators by using advanced fuzzy controlled binary particle swarm optimization algorithm
    • S. Chakraborty, T. Ito, T. Senjyu, and A. Saber Unit commitment strategy of thermal generators by using advanced fuzzy controlled binary particle swarm optimization algorithm Electrical Power Energy Syst. 43 1 2012 1072 1080
    • (2012) Electrical Power Energy Syst. , vol.43 , Issue.1 , pp. 1072-1080
    • Chakraborty, S.1    Ito, T.2    Senjyu, T.3    Saber, A.4
  • 33
    • 77956138748 scopus 로고    scopus 로고
    • An improved PSO approach to short-term economic dispatch of cascaded hydropower plants
    • Y. Yuan, and X. Yuan An improved PSO approach to short-term economic dispatch of cascaded hydropower plants Kybernetes 39 8 2010 1359 1365
    • (2010) Kybernetes , vol.39 , Issue.8 , pp. 1359-1365
    • Yuan, Y.1    Yuan, X.2
  • 34
    • 33746484868 scopus 로고    scopus 로고
    • Scheduling electric power generations using particle swarm optimization combined with the Lagrangian relaxation method
    • H. Balci, and J. Valenzuela Scheduling electric power generations using particle swarm optimization combined with the Lagrangian relaxation method Int. J. Appl. Math Comput. Sci. 14 2 2004 411 421
    • (2004) Int. J. Appl. Math Comput. Sci. , vol.14 , Issue.2 , pp. 411-421
    • Balci, H.1    Valenzuela, J.2
  • 35
    • 64549119687 scopus 로고    scopus 로고
    • GSA: A gravitational search algorithm
    • E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi GSA: a gravitational search algorithm Inf. Sci. 179 13 2009 2232 2248
    • (2009) Inf. Sci. , vol.179 , Issue.13 , pp. 2232-2248
    • Rashedi, E.1    Nezamabadi-Pour, H.2    Saryazdi, S.3
  • 37
    • 84888339093 scopus 로고    scopus 로고
    • Improved gravitational search algorithm for parameter identification of water turbine regulation system
    • Z. Chen, X. Yuan, H. Tian, and B. Ji Improved gravitational search algorithm for parameter identification of water turbine regulation system Energy Convers. Manage. 78 12 2014 306 315
    • (2014) Energy Convers. Manage. , vol.78 , Issue.12 , pp. 306-315
    • Chen, Z.1    Yuan, X.2    Tian, H.3    Ji, B.4
  • 38
    • 80052078913 scopus 로고    scopus 로고
    • Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm)
    • M. Behrang, E. Assareh, M. Ghalambaz, M. Assari, and A. Noghrehabadi Forecasting future oil demand in Iran using GSA (Gravitational Search Algorithm) Energy 36 9 2011 5649 5654
    • (2011) Energy , vol.36 , Issue.9 , pp. 5649-5654
    • Behrang, M.1    Assareh, E.2    Ghalambaz, M.3    Assari, M.4    Noghrehabadi, A.5
  • 40
    • 77955923868 scopus 로고    scopus 로고
    • BGSA: Binary gravitational search algorithm
    • E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi BGSA: binary gravitational search algorithm Nat. Comput. 9 3 2010 727 745
    • (2010) Nat. Comput. , vol.9 , Issue.3 , pp. 727-745
    • Rashedi, E.1    Nezamabadi-Pour, H.2    Saryazdi, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.