메뉴 건너뛰기




Volumn 43, Issue , 2014, Pages 20-32

Flow rate and time mean speed predictions for the urban freeway network using state space models

Author keywords

Congested and non congested traffic; Short term prediction; Spatial temporal pattern; State space model; Traffic flow

Indexed keywords

AUTOREGRESSIVE MOVING AVERAGE MODEL; FLOW RATE; FORECASTING; SPEED; STATE SPACE METHODS;

EID: 84902532605     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2014.02.014     Document Type: Article
Times cited : (54)

References (37)
  • 1
    • 12244292245 scopus 로고    scopus 로고
    • Short-term traffic flow prediction using neuro-genetic algorithms
    • Abdulhai B., Porwal H., Recker W. Short-term traffic flow prediction using neuro-genetic algorithms. ITS J. 2002, 7(1):3-41.
    • (2002) ITS J. , vol.7 , Issue.1 , pp. 3-41
    • Abdulhai, B.1    Porwal, H.2    Recker, W.3
  • 2
    • 0018729076 scopus 로고
    • Analysis of freeway traffic time-series data using box-Jenkin techniques
    • Ahmed S.A., Cook A.R. Analysis of freeway traffic time-series data using box-Jenkin techniques. Transport. Res. Rec. 1979, 722:1-9.
    • (1979) Transport. Res. Rec. , vol.722 , pp. 1-9
    • Ahmed, S.A.1    Cook, A.R.2
  • 3
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical methods in classification of multisource remote sensing data
    • Benediktsson J.A., Swain P.H., Ersoy O.K. Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 1990, 28(4):540-552.
    • (1990) IEEE Trans. Geosci. Remote Sens. , vol.28 , Issue.4 , pp. 540-552
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 4
    • 0026128928 scopus 로고
    • Nonparametric regression and short term freeway traffic forecasting
    • Davis G.A., Nihan N.L. Nonparametric regression and short term freeway traffic forecasting. J. Transport. Eng. 1991, 117(2):178-188.
    • (1991) J. Transport. Eng. , vol.117 , Issue.2 , pp. 178-188
    • Davis, G.A.1    Nihan, N.L.2
  • 5
    • 84867179747 scopus 로고    scopus 로고
    • The analysis of spatial and temporal characteristics for congested traffic on urban expressway
    • Dong C., Shao C., Zhuge C., Meng M. The analysis of spatial and temporal characteristics for congested traffic on urban expressway. J. Beijing Univ. Technol. 2012, 38(8):1242-1246.
    • (2012) J. Beijing Univ. Technol. , vol.38 , Issue.8 , pp. 1242-1246
    • Dong, C.1    Shao, C.2    Zhuge, C.3    Meng, M.4
  • 6
    • 0027787102 scopus 로고    scopus 로고
    • The use of neural networks to recognize and predict traffic congestion
    • Dougherty M.S., Kirby H.C. The use of neural networks to recognize and predict traffic congestion. Traffic Eng. Control 1998, 34(6):311-314.
    • (1998) Traffic Eng. Control , vol.34 , Issue.6 , pp. 311-314
    • Dougherty, M.S.1    Kirby, H.C.2
  • 8
    • 0002810672 scopus 로고
    • An analysis of traffic flow
    • Greenberg H. An analysis of traffic flow. Oper. Res. 1959, 7(1):79-85.
    • (1959) Oper. Res. , vol.7 , Issue.1 , pp. 79-85
    • Greenberg, H.1
  • 9
    • 0029308065 scopus 로고
    • Short-term prediction of traffic volume in urban arterials
    • Hamed M.M., Al-Masaeid H.R., Said Z.M. Short-term prediction of traffic volume in urban arterials. J. Transport. Eng. 1995, 121(3):249-254.
    • (1995) J. Transport. Eng. , vol.121 , Issue.3 , pp. 249-254
    • Hamed, M.M.1    Al-Masaeid, H.R.2    Said, Z.M.3
  • 10
    • 3242676259 scopus 로고    scopus 로고
    • Optimizing traffic prediction performance of neural networks under various topological, input and traffic condition settings
    • Ishak S., Alecsandru C. Optimizing traffic prediction performance of neural networks under various topological, input and traffic condition settings. J. Transport. Eng. 2004, 130(4):452-465.
    • (2004) J. Transport. Eng. , vol.130 , Issue.4 , pp. 452-465
    • Ishak, S.1    Alecsandru, C.2
  • 11
    • 85024429815 scopus 로고
    • A new approach to linear filtering and prediction problems
    • Kalman R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82(4):35-45.
    • (1960) J. Basic Eng. , vol.82 , Issue.4 , pp. 35-45
    • Kalman, R.E.1
  • 12
    • 0002859031 scopus 로고
    • An integrated approach to vehicle routing and congestion prediction for real-time driver guidance
    • Kaysi I., Ben-Akiva M., Koutsopoulos H. An integrated approach to vehicle routing and congestion prediction for real-time driver guidance. Transport. Res. Rec. 1993, 1408:66-74.
    • (1993) Transport. Res. Rec. , vol.1408 , pp. 66-74
    • Kaysi, I.1    Ben-Akiva, M.2    Koutsopoulos, H.3
  • 13
  • 15
    • 0021375695 scopus 로고
    • Dynamic prediction of traffic volume through kalman filtering theory
    • Okutani I., Stephanedes Y.J. Dynamic prediction of traffic volume through kalman filtering theory. Transport. Res. Part B: Methodol. 1984, 18(1):1-11.
    • (1984) Transport. Res. Part B: Methodol. , vol.18 , Issue.1 , pp. 1-11
    • Okutani, I.1    Stephanedes, Y.J.2
  • 16
    • 0003023581 scopus 로고    scopus 로고
    • Short-term freeway traffic volume forecasting using radial basis function neural network
    • Park B., Carroll J.M., Urbank T. Short-term freeway traffic volume forecasting using radial basis function neural network. Transport. Res. Rec. 1998, 1651:39-46.
    • (1998) Transport. Res. Rec. , vol.1651 , pp. 39-46
    • Park, B.1    Carroll, J.M.2    Urbank, T.3
  • 17
    • 0018708437 scopus 로고
    • FREFLO: a macroscopic simulation model of freeway traffic
    • Payne H.J. FREFLO: a macroscopic simulation model of freeway traffic. Transport. Res. Rec. 1979, 722:68-77.
    • (1979) Transport. Res. Rec. , vol.722 , pp. 68-77
    • Payne, H.J.1
  • 19
    • 0002842180 scopus 로고
    • Shock waves on the highway
    • Richards P.I. Shock waves on the highway. Oper. Res. 1956, 4(1):42-51.
    • (1956) Oper. Res. , vol.4 , Issue.1 , pp. 42-51
    • Richards, P.I.1
  • 20
    • 0001891123 scopus 로고
    • Short-term traffic flow prediction: neural network approach
    • Smith B.L., Demetsky M.J. Short-term traffic flow prediction: neural network approach. Transport. Res. Rec. 1994, 1453:98-104.
    • (1994) Transport. Res. Rec. , vol.1453 , pp. 98-104
    • Smith, B.L.1    Demetsky, M.J.2
  • 21
    • 0038034269 scopus 로고    scopus 로고
    • Meeting real-time requirements with imprecise computations: a case study in traffic flow forecasting
    • Smith B.L., Oswald R.K. Meeting real-time requirements with imprecise computations: a case study in traffic flow forecasting. Comput. Aid. Civ. Infrastruct. Eng. 2003, 18(3):201-213.
    • (2003) Comput. Aid. Civ. Infrastruct. Eng. , vol.18 , Issue.3 , pp. 201-213
    • Smith, B.L.1    Oswald, R.K.2
  • 22
    • 0036692982 scopus 로고    scopus 로고
    • Comparison of parametric and non-parametric models for traffic flow forecasting
    • Smith B.L., Williams B.M., Oswald K.R. Comparison of parametric and non-parametric models for traffic flow forecasting. Transport. Res. Part C: Emerg. Technol. 2002, 10(4):303-321.
    • (2002) Transport. Res. Part C: Emerg. Technol. , vol.10 , Issue.4 , pp. 303-321
    • Smith, B.L.1    Williams, B.M.2    Oswald, K.R.3
  • 23
    • 0037954189 scopus 로고    scopus 로고
    • A multivariate state-space approach to urban traffic flow prediction
    • Stathopoulos A., Karlaftis M.G. A multivariate state-space approach to urban traffic flow prediction. Transport. Res. Part C: Emerg. Technol. 2003, 11(2):121-135.
    • (2003) Transport. Res. Part C: Emerg. Technol. , vol.11 , Issue.2 , pp. 121-135
    • Stathopoulos, A.1    Karlaftis, M.G.2
  • 24
    • 0036154744 scopus 로고    scopus 로고
    • Statistical analysis of freeway traffic flows
    • Tebaldi C., West M., Karr A.F. Statistical analysis of freeway traffic flows. J. Forecasting 2002, 21(1):39-68.
    • (2002) J. Forecasting , vol.21 , Issue.1 , pp. 39-68
    • Tebaldi, C.1    West, M.2    Karr, A.F.3
  • 25
    • 0030297904 scopus 로고    scopus 로고
    • Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes
    • Tu J.V. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 1996, 49(11):1225-1231.
    • (1996) J. Clin. Epidemiol. , vol.49 , Issue.11 , pp. 1225-1231
    • Tu, J.V.1
  • 28
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transport. Res. Part C: Emerg. Technol. 2005, 13(3):211-234.
    • (2005) Transport. Res. Part C: Emerg. Technol. , vol.13 , Issue.3 , pp. 211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 29
    • 11144262651 scopus 로고    scopus 로고
    • Real-time freeway traffic state estimation based on extended Kalman filter: a general approach
    • Wang Y., Papageorgiou M. Real-time freeway traffic state estimation based on extended Kalman filter: a general approach. Transport. Res. Part B: Methodol. 2005, 39(2):141-167.
    • (2005) Transport. Res. Part B: Methodol. , vol.39 , Issue.2 , pp. 141-167
    • Wang, Y.1    Papageorgiou, M.2
  • 31
    • 0035563672 scopus 로고    scopus 로고
    • Multivariate vehicular traffic flow prediction: an evaluation of ARIMAX modeling
    • Williams B.M. Multivariate vehicular traffic flow prediction: an evaluation of ARIMAX modeling. Transport. Res. Rec. 2001, 1776:194-200.
    • (2001) Transport. Res. Rec. , vol.1776 , pp. 194-200
    • Williams, B.M.1
  • 32
    • 0032207514 scopus 로고    scopus 로고
    • Urban traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models
    • Williams B.M., Durvasula P.K., Brown D.E. Urban traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models. Transport. Res. Rec. 1998, 1644:132-144.
    • (1998) Transport. Res. Rec. , vol.1644 , pp. 132-144
    • Williams, B.M.1    Durvasula, P.K.2    Brown, D.E.3
  • 34
    • 84876407045 scopus 로고    scopus 로고
    • Development of recurrent neural network considering temporal-spatial input dynamics for freeway travel time modeling
    • Zeng X., Zhang Y. Development of recurrent neural network considering temporal-spatial input dynamics for freeway travel time modeling. Comput. - Aid. Civ. Infrastruct. Eng. 2013, 28(5):359-371.
    • (2013) Comput. - Aid. Civ. Infrastruct. Eng. , vol.28 , Issue.5 , pp. 359-371
    • Zeng, X.1    Zhang, Y.2
  • 36
    • 0001477735 scopus 로고    scopus 로고
    • Macroscopic modeling of freeway traffic using an artificial neural network
    • Zhang H.J., Ritchie S.G., Lo Z.P. Macroscopic modeling of freeway traffic using an artificial neural network. Transport. Res. Rec. 1997, 1588:110-119.
    • (1997) Transport. Res. Rec. , vol.1588 , pp. 110-119
    • Zhang, H.J.1    Ritchie, S.G.2    Lo, Z.P.3
  • 37
    • 31044437283 scopus 로고    scopus 로고
    • Short-term freeway traffic flow prediction: Bayesian combined neural network approach
    • Zheng W., Asce M.L.D., Shi Q. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. J. Transport. Eng. 2006, 132(2):114-121.
    • (2006) J. Transport. Eng. , vol.132 , Issue.2 , pp. 114-121
    • Zheng, W.1    Asce, M.L.D.2    Shi, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.