-
1
-
-
20144376966
-
Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome
-
Aligianis, I.A., C.A. Johnson, P. Gissen, D. Chen, D. Hampshire, K. Hoffmann, E.N. Maina, N.V. Morgan, L. Tee, J. Morton, et al. 2005. Mutations of the catalytic subunit of RAB3GAP cause Warburg Micro syndrome. Nat. Genet. 37:221-223. http://dx.doi.org/10.1038/ng1517
-
(2005)
Nat. Genet.
, vol.37
, pp. 221-223
-
-
Aligianis, I.A.1
Johnson, C.A.2
Gissen, P.3
Chen, D.4
Hampshire, D.5
Hoffmann, K.6
Maina, E.N.7
Morgan, N.V.8
Tee, L.9
Morton, J.10
-
2
-
-
33645463470
-
Mutation in Rab3 GTPase-activating protein (RAB3GAP) noncatalytic subunit in a kindred with Martsolf syndrome
-
Aligianis, I.A., N.V. Morgan, M. Mione, C.A. Johnson, E. Rosser, R.C. Hennekam, G. Adams, R.C. Trembath, D.T. Pilz, N. Stoodley, et al. 2006. Mutation in Rab3 GTPase-activating protein (RAB3GAP) noncatalytic subunit in a kindred with Martsolf syndrome. Am. J. Hum. Genet. 78:702-707. http://dx.doi.org/10.1086/502681
-
(2006)
Am. J. Hum. Genet.
, vol.78
, pp. 702-707
-
-
Aligianis, I.A.1
Morgan, N.V.2
Mione, M.3
Johnson, C.A.4
Rosser, E.5
Hennekam, R.C.6
Adams, G.7
Trembath, R.C.8
Pilz, D.T.9
Stoodley, N.10
-
3
-
-
84880816067
-
Review series: Rab GTPases and membrane identity: causal or inconsequential?
-
Barr, F.A. 2013. Review series: Rab GTPases and membrane identity: causal or inconsequential? J. Cell Biol. 202:191-199. http://dx.doi.org/10.1083/jcb.201306010
-
(2013)
J. Cell Biol.
, vol.202
, pp. 191-199
-
-
Barr, F.A.1
-
4
-
-
79953728451
-
Loss-of-function mutations in RAB18 cause Warburg Micro syndrome
-
Bem, D., S. Yoshimura, R. Nunes-Bastos, F.C. Bond, M.A. Kurian, F. Rahman, M.T. Handley, Y. Hadzhiev, I. Masood, A.A. Straatman-Iwanowska, et al. 2011. Loss-of-function mutations in RAB18 cause Warburg Micro syndrome. Am. J. Hum. Genet. 88:499-507. http://dx.doi.org/10.1016/j.ajhg.2011.03.012
-
(2011)
Am. J. Hum. Genet.
, vol.88
, pp. 499-507
-
-
Bem, D.1
Yoshimura, S.2
Nunes-Bastos, R.3
Bond, F.C.4
Kurian, M.A.5
Rahman, F.6
Handley, M.T.7
Hadzhiev, Y.8
Masood, I.9
Straatman-Iwanowska, A.A.10
-
5
-
-
84862701627
-
Cellular pathways of hereditary spastic paraplegia
-
Blackstone, C. 2012. Cellular pathways of hereditary spastic paraplegia. Annu. Rev. Neurosci. 35:25-47. http://dx.doi.org/10.1146/annurev-neuro-062111-150400
-
(2012)
Annu. Rev. Neurosci.
, vol.35
, pp. 25-47
-
-
Blackstone, C.1
-
6
-
-
84874366009
-
RabGEFs are a major determinant for specific Rab membrane targeting
-
Blümer, J., J. Rey, L. Dehmelt, T. Mazel, Y.W. Wu, P. Bastiaens, R.S. Goody, and A. Itzen. 2013. RabGEFs are a major determinant for specific Rab membrane targeting. J. Cell Biol. 200:287-300. http://dx.doi.org/10.1083/jcb.201209113
-
(2013)
J. Cell Biol.
, vol.200
, pp. 287-300
-
-
Blümer, J.1
Rey, J.2
Dehmelt, L.3
Mazel, T.4
Wu, Y.W.5
Bastiaens, P.6
Goody, R.S.7
Itzen, A.8
-
7
-
-
52649178960
-
Rab18 and Rab43 have key roles in ER-Golgi trafficking
-
Dejgaard, S.Y., A. Murshid, A. Erman, O. Kizilay, D. Verbich, R. Lodge, K. Dejgaard, T.B. Ly-Hartig, R. Pepperkok, J.C. Simpson, and J.F. Presley. 2008. Rab18 and Rab43 have key roles in ER-Golgi trafficking. J. Cell Sci. 121:2768-2781. http://dx.doi.org/10.1242/jcs.021808
-
(2008)
J. Cell Sci.
, vol.121
, pp. 2768-2781
-
-
Dejgaard, S.Y.1
Murshid, A.2
Erman, A.3
Kizilay, O.4
Verbich, D.5
Lodge, R.6
Dejgaard, K.7
Ly-Hartig, T.B.8
Pepperkok, R.9
Simpson, J.C.10
Presley, J.F.11
-
8
-
-
34247596532
-
Structural basis for Rab GTPase activation by VPS9 domain exchange factors
-
Delprato, A., and D.G. Lambright. 2007. Structural basis for Rab GTPase activation by VPS9 domain exchange factors. Nat. Struct. Mol. Biol. 14:406-412. http://dx.doi.org/10.1038/nsmb1232
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 406-412
-
-
Delprato, A.1
Lambright, D.G.2
-
9
-
-
4444351852
-
Structure, exchange determinants, and family-wide rab specificity of the tandem helical bundle and Vps9 domains of Rabex-5
-
Delprato, A., E. Merithew, and D.G. Lambright. 2004. Structure, exchange determinants, and family-wide rab specificity of the tandem helical bundle and Vps9 domains of Rabex-5. Cell. 118:607-617. http://dx.doi.org/10.1016/j.cell.2004.08.009
-
(2004)
Cell.
, vol.118
, pp. 607-617
-
-
Delprato, A.1
Merithew, E.2
Lambright, D.G.3
-
10
-
-
84864805551
-
Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases
-
Elias, M., A. Brighouse, C. Gabernet-Castello, M.C. Field, and J.B. Dacks. 2012. Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J. Cell Sci. 125:2500-2508. http://dx.doi.org/10.1242/jcs.101378
-
(2012)
J. Cell Sci.
, vol.125
, pp. 2500-2508
-
-
Elias, M.1
Brighouse, A.2
Gabernet-Castello, C.3
Field, M.C.4
Dacks, J.B.5
-
11
-
-
84873358822
-
Rab10 GTPase regulates ER dynamics and morphology
-
English, A.R., and G.K. Voeltz. 2013. Rab10 GTPase regulates ER dynamics and morphology. Nat. Cell Biol. 15:169-178. http://dx.doi.org/10.1038/ncb2647
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 169-178
-
-
English, A.R.1
Voeltz, G.K.2
-
12
-
-
84893774987
-
Loss of association of REEP2 with membranes leads to hereditary spastic paraplegia
-
Esteves, T., A. Durr, E. Mundwiller, J.L. Loureiro, M. Boutry, M.A. Gonzalez, J. Gauthier, K.H. El-Hachimi, C. Depienne, M.P. Muriel, et al. 2014. Loss of association of REEP2 with membranes leads to hereditary spastic paraplegia. Am. J. Hum. Genet. 94:268-277. http://dx.doi.org/10.1016/j.ajhg.2013.12.005
-
(2014)
Am. J. Hum. Genet.
, vol.94
, pp. 268-277
-
-
Esteves, T.1
Durr, A.2
Mundwiller, E.3
Loureiro, J.L.4
Boutry, M.5
Gonzalez, M.A.6
Gauthier, J.7
El-Hachimi, K.H.8
Depienne, C.9
Muriel, M.P.10
-
13
-
-
84883461543
-
Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms
-
Fink, J.K. 2013. Hereditary spastic paraplegia: clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. 126:307-328. http://dx.doi.org/10.1007/s00401-013-1115-8
-
(2013)
Acta Neuropathol.
, vol.126
, pp. 307-328
-
-
Fink, J.K.1
-
14
-
-
81355137930
-
The ER in 3D: a multifunctional dynamic membrane network
-
Friedman, J.R., and G.K. Voeltz. 2011. The ER in 3D: a multifunctional dynamic membrane network. Trends Cell Biol. 21:709-717. http://dx.doi.org/10.1016/j.tcb.2011.07.004
-
(2011)
Trends Cell Biol.
, vol.21
, pp. 709-717
-
-
Friedman, J.R.1
Voeltz, G.K.2
-
15
-
-
34250784595
-
Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways
-
Fuchs, E., A.K. Haas, R.A. Spooner, S. Yoshimura, J.M. Lord, and F.A. Barr. 2007. Specific Rab GTPase-activating proteins define the Shiga toxin and epidermal growth factor uptake pathways. J. Cell Biol. 177:1133-1143. http://dx.doi.org/10.1083/jcb.200612068
-
(2007)
J. Cell Biol.
, vol.177
, pp. 1133-1143
-
-
Fuchs, E.1
Haas, A.K.2
Spooner, R.A.3
Yoshimura, S.4
Lord, J.M.5
Barr, F.A.6
-
16
-
-
0031048104
-
Isolation and characterization of a GTPase activating protein specific for the Rab3 subfamily of small G proteins
-
Fukui, K., T. Sasaki, K. Imazumi, Y. Matsuura, H. Nakanishi, and Y. Takai. 1997. Isolation and characterization of a GTPase activating protein specific for the Rab3 subfamily of small G proteins. J. Biol. Chem. 272:4655-4658. http://dx.doi.org/10.1074/jbc.272.8.4655
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 4655-4658
-
-
Fukui, K.1
Sasaki, T.2
Imazumi, K.3
Matsuura, Y.4
Nakanishi, H.5
Takai, Y.6
-
17
-
-
84869491973
-
BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor
-
Gerondopoulos, A., L. Langemeyer, J.R. Liang, A. Linford, and F.A. Barr. 2012. BLOC-3 mutated in Hermansky-Pudlak syndrome is a Rab32/38 guanine nucleotide exchange factor. Curr. Biol. 22:2135-2139. http://dx.doi.org/10.1016/j.cub.2012.09.020
-
(2012)
Curr. Biol.
, vol.22
, pp. 2135-2139
-
-
Gerondopoulos, A.1
Langemeyer, L.2
Liang, J.R.3
Linford, A.4
Barr, F.A.5
-
18
-
-
84873715499
-
Localization of Rab proteins to peroxisomes: a proteomics and immunofluorescence study
-
Gronemeyer, T., S. Wiese, S. Grinhagens, L. Schollenberger, A. Satyagraha, L.A. Huber, H.E. Meyer, B. Warscheid, and W.W. Just. 2013. Localization of Rab proteins to peroxisomes: a proteomics and immunofluorescence study. FEBS Lett. 587:328-338. http://dx.doi.org/10.1016/j.febslet.2012.12.025
-
(2013)
FEBS Lett.
, vol.587
, pp. 328-338
-
-
Gronemeyer, T.1
Wiese, S.2
Grinhagens, S.3
Schollenberger, L.4
Satyagraha, A.5
Huber, L.A.6
Meyer, H.E.7
Warscheid, B.8
Just, W.W.9
-
19
-
-
34948874261
-
Analysis of GTPase-activating proteins: Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells
-
Haas, A.K., S. Yoshimura, D.J. Stephens, C. Preisinger, E. Fuchs, and F.A. Barr. 2007. Analysis of GTPase-activating proteins: Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells. J. Cell Sci. 120:2997-3010. http://dx.doi.org/10.1242/jcs.014225
-
(2007)
J. Cell Sci.
, vol.120
, pp. 2997-3010
-
-
Haas, A.K.1
Yoshimura, S.2
Stephens, D.J.3
Preisinger, C.4
Fuchs, E.5
Barr, F.A.6
-
20
-
-
84870203239
-
RAB3GAP1, RAB3GAP2 and RAB18: disease genes in Micro and Martsolf syndromes
-
Handley, M.T., and I.A. Aligianis. 2012. RAB3GAP1, RAB3GAP2 and RAB18: disease genes in Micro and Martsolf syndromes. Biochem. Soc. Trans. 40:1394-1397. http://dx.doi.org/10.1042/BST20120169
-
(2012)
Biochem. Soc. Trans.
, vol.40
, pp. 1394-1397
-
-
Handley, M.T.1
Aligianis, I.A.2
-
21
-
-
84876322332
-
Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotypephenotype correlations in Warburg Micro syndrome and Martsolf syndrome
-
Handley, M.T., D.J. Morris-Rosendahl, S. Brown, F. Macdonald, C. Hardy, D. Bem, S.M. Carpanini, G. Borck, L. Martorell, C. Izzi, et al. 2013. Mutation spectrum in RAB3GAP1, RAB3GAP2, and RAB18 and genotypephenotype correlations in Warburg Micro syndrome and Martsolf syndrome. Hum. Mutat. 34:686-696. http://dx.doi.org/10.1002/humu.22296
-
(2013)
Hum. Mutat.
, vol.34
, pp. 686-696
-
-
Handley, M.T.1
Morris-Rosendahl, D.J.2
Brown, S.3
Macdonald, F.4
Hardy, C.5
Bem, D.6
Carpanini, S.M.7
Borck, G.8
Martorell, L.9
Izzi, C.10
-
22
-
-
0032721512
-
Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia
-
Hazan, J., N. Fonknechten, D. Mavel, C. Paternotte, D. Samson, F. Artiguenave, C.S. Davoine, C. Cruaud, A. Dürr, P. Wincker, et al. 1999. Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia. Nat. Genet. 23:296-303. http://dx.doi.org/10.1038/15472
-
(1999)
Nat. Genet.
, vol.23
, pp. 296-303
-
-
Hazan, J.1
Fonknechten, N.2
Mavel, D.3
Paternotte, C.4
Samson, D.5
Artiguenave, F.6
Davoine, C.S.7
Cruaud, C.8
Dürr, A.9
Wincker, P.10
-
23
-
-
68049096310
-
A class of dynamin-like GTPases involved in the generation of the tubular ER network
-
Hu, J., Y. Shibata, P.P. Zhu, C. Voss, N. Rismanchi, W.A. Prinz, T.A. Rapoport, and C. Blackstone. 2009. A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell. 138:549-561. http://dx.doi.org/10.1016/j.cell.2009.05.025
-
(2009)
Cell.
, vol.138
, pp. 549-561
-
-
Hu, J.1
Shibata, Y.2
Zhu, P.P.3
Voss, C.4
Rismanchi, N.5
Prinz, W.A.6
Rapoport, T.A.7
Blackstone, C.8
-
24
-
-
0035844877
-
Subdomain-specific localization of CLIMP-63 (p63) in the endoplasmic reticulum is mediated by its luminal alphahelical segment
-
Klopfenstein, D.R., J. Klumperman, A. Lustig, R.A. Kammerer, V. Oorschot, and H.P. Hauri. 2001. Subdomain-specific localization of CLIMP-63 (p63) in the endoplasmic reticulum is mediated by its luminal alphahelical segment. J. Cell Biol. 153:1287-1300. http://dx.doi.org/10.1083/jcb.153.6.1287
-
(2001)
J. Cell Biol.
, vol.153
, pp. 1287-1300
-
-
Klopfenstein, D.R.1
Klumperman, J.2
Lustig, A.3
Kammerer, R.A.4
Oorschot, V.5
Hauri, H.P.6
-
25
-
-
84865378898
-
Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis
-
Klöpper, T.H., N. Kienle, D. Fasshauer, and S. Munro. 2012. Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol. 10:71. http://dx.doi.org/10.1186/1741-7007-10-71
-
(2012)
BMC Biol.
, vol.10
, pp. 71
-
-
Klöpper, T.H.1
Kienle, N.2
Fasshauer, D.3
Munro, S.4
-
26
-
-
84898756626
-
Diversity and plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab activation and inactivation
-
Langemeyer, L., R. Nunes Bastos, Y. Cai, A. Itzen, K.M. Reinisch, and F.A. Barr. 2014. Diversity and plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab activation and inactivation. Elife. 3:e01623. http://dx.doi.org/10.7554/eLife.01623
-
(2014)
Elife.
, vol.3
-
-
Langemeyer, L.1
Nunes Bastos, R.2
Cai, Y.3
Itzen, A.4
Reinisch, K.M.5
Barr, F.A.6
-
27
-
-
84873813295
-
A Rab10-dependent mechanism for polarized basement membrane secretion during organ morphogenesis
-
Lerner, D.W., D. McCoy, A.J. Isabella, A.P. Mahowald, G.F. Gerlach, T.A. Chaudhry, and S. Horne-Badovinac. 2013. A Rab10-dependent mechanism for polarized basement membrane secretion during organ morphogenesis. Dev. Cell. 24:159-168. http://dx.doi.org/10.1016/j.devcel.2012.12.005
-
(2013)
Dev. Cell.
, vol.24
, pp. 159-168
-
-
Lerner, D.W.1
McCoy, D.2
Isabella, A.J.3
Mahowald, A.P.4
Gerlach, G.F.5
Chaudhry, T.A.6
Horne-Badovinac, S.7
-
28
-
-
84890310034
-
Lossof-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg Micro syndrome in humans
-
Liegel, R.P., M.T. Handley, A. Ronchetti, S. Brown, L. Langemeyer, A. Linford, B. Chang, D.J. Morris-Rosendahl, S. Carpanini, R. Posmyk, et al. 2013. Lossof-function mutations in TBC1D20 cause cataracts and male infertility in blind sterile mice and Warburg Micro syndrome in humans. Am. J. Hum. Genet. 93:1001-1014. http://dx.doi.org/10.1016/j.ajhg.2013.10.011
-
(2013)
Am. J. Hum. Genet.
, vol.93
, pp. 1001-1014
-
-
Liegel, R.P.1
Handley, M.T.2
Ronchetti, A.3
Brown, S.4
Langemeyer, L.5
Linford, A.6
Chang, B.7
Morris-Rosendahl, D.J.8
Carpanini, S.9
Posmyk, R.10
-
29
-
-
0028587867
-
Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression
-
Lütcke, A., R.G. Parton, C. Murphy, V.M. Olkkonen, P. Dupree, A. Valencia, K. Simons, and M. Zerial. 1994. Cloning and subcellular localization of novel rab proteins reveals polarized and cell type-specific expression. J. Cell Sci. 107:3437-3448.
-
(1994)
J. Cell Sci.
, vol.107
, pp. 3437-3448
-
-
Lütcke, A.1
Parton, R.G.2
Murphy, C.3
Olkkonen, V.M.4
Dupree, P.5
Valencia, A.6
Simons, K.7
Zerial, M.8
-
30
-
-
29644442801
-
Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism
-
Martin, S., K. Driessen, S.J. Nixon, M. Zerial, and R.G. Parton. 2005. Regulated localization of Rab18 to lipid droplets: effects of lipolytic stimulation and inhibition of lipid droplet catabolism. J. Biol. Chem. 280:42325-42335. http://dx.doi.org/10.1074/jbc.M506651200
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 42325-42335
-
-
Martin, S.1
Driessen, K.2
Nixon, S.J.3
Zerial, M.4
Parton, R.G.5
-
31
-
-
84863011952
-
Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12
-
Montenegro, G., A.P. Rebelo, J. Connell, R. Allison, C. Babalini, M. D'Aloia, P. Montieri, R. Schüle, H. Ishiura, J. Price, et al. 2012. Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. J. Clin. Invest. 122:538-544. http://dx.doi.org/10.1172/JCI60560
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 538-544
-
-
Montenegro, G.1
Rebelo, A.P.2
Connell, J.3
Allison, R.4
Babalini, C.5
D'Aloia, M.6
Montieri, P.7
Schüle, R.8
Ishiura, H.9
Price, J.10
-
32
-
-
0032544705
-
Molecular cloning and characterization of the noncatalytic subunit of the Rab3 subfamily-specific GTPase-activating protein
-
Nagano, F., T. Sasaki, K. Fukui, T. Asakura, K. Imazumi, and Y. Takai. 1998. Molecular cloning and characterization of the noncatalytic subunit of the Rab3 subfamily-specific GTPase-activating protein. J. Biol. Chem. 273:24781-24785. http://dx.doi.org/10.1074/jbc.273.38.24781
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 24781-24785
-
-
Nagano, F.1
Sasaki, T.2
Fukui, K.3
Asakura, T.4
Imazumi, K.5
Takai, Y.6
-
33
-
-
84893041011
-
Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders
-
Novarino, G., A.G. Fenstermaker, M.S. Zaki, M. Hofree, J.L. Silhavy, A.D. Heiberg, M. Abdellateef, B. Rosti, E. Scott, L. Mansour, et al. 2014. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders. Science. 343:506-511. http://dx.doi.org/10.1126/science.1247363
-
(2014)
Science.
, vol.343
, pp. 506-511
-
-
Novarino, G.1
Fenstermaker, A.G.2
Zaki, M.S.3
Hofree, M.4
Silhavy, J.L.5
Heiberg, A.D.6
Abdellateef, M.7
Rosti, B.8
Scott, E.9
Mansour, L.10
-
34
-
-
69249205412
-
Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin
-
Orso, G., D. Pendin, S. Liu, J. Tosetto, T.J. Moss, J.E. Faust, M. Micaroni, A. Egorova, A. Martinuzzi, J.A. McNew, and A. Daga. 2009. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature. 460:978-983. http://dx.doi.org/10.1038/nature08280
-
(2009)
Nature.
, vol.460
, pp. 978-983
-
-
Orso, G.1
Pendin, D.2
Liu, S.3
Tosetto, J.4
Moss, T.J.5
Faust, J.E.6
Micaroni, M.7
Egorova, A.8
Martinuzzi, A.9
McNew, J.A.10
Daga, A.11
-
35
-
-
21644459401
-
Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane
-
Ozeki, S., J. Cheng, K. Tauchi-Sato, N. Hatano, H. Taniguchi, and T. Fujimoto. 2005. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J. Cell Sci. 118:2601-2611. http://dx.doi.org/10.1242/jcs.02401
-
(2005)
J. Cell Sci.
, vol.118
, pp. 2601-2611
-
-
Ozeki, S.1
Cheng, J.2
Tauchi-Sato, K.3
Hatano, N.4
Taniguchi, H.5
Fujimoto, T.6
-
36
-
-
77951172861
-
Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network
-
Park, S.H., P.P. Zhu, R.L. Parker, and C. Blackstone. 2010. Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J. Clin. Invest. 120:1097-1110. http://dx.doi.org/10.1172/JCI40979
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 1097-1110
-
-
Park, S.H.1
Zhu, P.P.2
Parker, R.L.3
Blackstone, C.4
-
37
-
-
84883454656
-
Rab GTPase regulation of membrane identity
-
Pfeffer, S.R. 2013. Rab GTPase regulation of membrane identity. Curr. Opin. Cell Biol. 25:414-419. http://dx.doi.org/10.1016/j.ceb.2013.04.002
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 414-419
-
-
Pfeffer, S.R.1
-
38
-
-
84866728707
-
Endoplasmic reticulum-mitochondria contacts: function of the junction
-
Rowland, A.A., and G.K. Voeltz. 2012. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13:607-625. http://dx.doi.org/10.1038/nrm3440
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 607-625
-
-
Rowland, A.A.1
Voeltz, G.K.2
-
39
-
-
33745598157
-
Rab3 GTPase-activating protein regulates synaptic transmission and plasticity through the inactivation of Rab3
-
Sakane, A., S. Manabe, H. Ishizaki, M. Tanaka-Okamoto, E. Kiyokage, K. Toida, T. Yoshida, J. Miyoshi, H. Kamiya, Y. Takai, and T. Sasaki. 2006. Rab3 GTPase-activating protein regulates synaptic transmission and plasticity through the inactivation of Rab3. Proc. Natl. Acad. Sci. USA. 103:10029-10034. http://dx.doi.org/10.1073/pnas.0600304103
-
(2006)
Proc. Natl. Acad. Sci. USA.
, vol.103
, pp. 10029-10034
-
-
Sakane, A.1
Manabe, S.2
Ishizaki, H.3
Tanaka-Okamoto, M.4
Kiyokage, E.5
Toida, K.6
Yoshida, T.7
Miyoshi, J.8
Kamiya, H.9
Takai, Y.10
Sasaki, T.11
-
40
-
-
84883350018
-
Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets
-
Salloum, S., H. Wang, C. Ferguson, R.G. Parton, and A.W. Tai. 2013. Rab18 binds to hepatitis C virus NS5A and promotes interaction between sites of viral replication and lipid droplets. PLoS Pathog. 9:e1003513. http://dx.doi.org/10.1371/journal.ppat.1003513
-
(2013)
PLoS Pathog.
, vol.9
-
-
Salloum, S.1
Wang, H.2
Ferguson, C.3
Parton, R.G.4
Tai, A.W.5
-
41
-
-
49649084487
-
The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum
-
Shibata, Y., C. Voss, J.M. Rist, J. Hu, T.A. Rapoport, W.A. Prinz, and G.K. Voeltz. 2008. The reticulon and DP1/Yop1p proteins form immobile oligomers in the tubular endoplasmic reticulum. J. Biol. Chem. 283:18892-18904. http://dx.doi.org/10.1074/jbc.M800986200
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 18892-18904
-
-
Shibata, Y.1
Voss, C.2
Rist, J.M.3
Hu, J.4
Rapoport, T.A.5
Prinz, W.A.6
Voeltz, G.K.7
-
42
-
-
79251471434
-
Mechanisms determining the morphology of the peripheral ER
-
Shibata, Y., T. Shemesh, W.A. Prinz, A.F. Palazzo, M.M. Kozlov, and T.A. Rapoport. 2010. Mechanisms determining the morphology of the peripheral ER. Cell. 143:774-788. http://dx.doi.org/10.1016/j.cell.2010.11.007
-
(2010)
Cell.
, vol.143
, pp. 774-788
-
-
Shibata, Y.1
Shemesh, T.2
Prinz, W.A.3
Palazzo, A.F.4
Kozlov, M.M.5
Rapoport, T.A.6
-
43
-
-
34250813802
-
Rab18 inhibits secretory activity in neuroendocrine cells by interacting with secretory granules
-
Vazquez-Martinez, R., D. Cruz-Garcia, M. Duran-Prado, J.R. Peinado, J.P. Castaño, and M.M. Malagon. 2007. Rab18 inhibits secretory activity in neuroendocrine cells by interacting with secretory granules. Traffic. 8:867-882. http://dx.doi.org/10.1111/j.1600-0854.2007.00570.x
-
(2007)
Traffic.
, vol.8
, pp. 867-882
-
-
Vazquez-Martinez, R.1
Cruz-Garcia, D.2
Duran-Prado, M.3
Peinado, J.R.4
Castaño, J.P.5
Malagon, M.M.6
-
44
-
-
33847199803
-
Sheets, ribbons and tubules - how organelles get their shape
-
Voeltz, G.K., and W.A. Prinz. 2007. Sheets, ribbons and tubules - how organelles get their shape. Nat. Rev. Mol. Cell Biol. 8:258-264. http://dx.doi.org/10.1038/nrm2119
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 258-264
-
-
Voeltz, G.K.1
Prinz, W.A.2
-
45
-
-
32044445021
-
A class of membrane proteins shaping the tubular endoplasmic reticulum
-
Voeltz, G.K., W.A. Prinz, Y. Shibata, J.M. Rist, and T.A. Rapoport. 2006. A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell. 124:573-586. http://dx.doi.org/10.1016/j.cell.2005.11.047
-
(2006)
Cell.
, vol.124
, pp. 573-586
-
-
Voeltz, G.K.1
Prinz, W.A.2
Shibata, Y.3
Rist, J.M.4
Rapoport, T.A.5
-
46
-
-
75049083932
-
A genomewide RNA interference screen identifies two novel components of the metazoan secretory pathway
-
Wendler, F., A.K. Gillingham, R. Sinka, C. Rosa-Ferreira, D.E. Gordon, X. Franch-Marro, A.A. Peden, J.P. Vincent, and S. Munro. 2010. A genomewide RNA interference screen identifies two novel components of the metazoan secretory pathway. EMBO J. 29:304-314. http://dx.doi.org/10.1038/emboj.2009.350
-
(2010)
EMBO J.
, vol.29
, pp. 304-314
-
-
Wendler, F.1
Gillingham, A.K.2
Sinka, R.3
Rosa-Ferreira, C.4
Gordon, D.E.5
Franch-Marro, X.6
Peden, A.A.7
Vincent, J.P.8
Munro, S.9
-
47
-
-
81755163615
-
Insights regarding guanine nucleotide exchange from the structure of a DENN-domain protein complexed with its Rab GTPase substrate
-
Wu, X., M.J. Bradley, Y. Cai, D. Kümmel, E.M. De La Cruz, F.A. Barr, and K.M. Reinisch. 2011. Insights regarding guanine nucleotide exchange from the structure of a DENN-domain protein complexed with its Rab GTPase substrate. Proc. Natl. Acad. Sci. USA. 108:18672-18677. http://dx.doi.org/10.1073/pnas.1110415108
-
(2011)
Proc. Natl. Acad. Sci. USA.
, vol.108
, pp. 18672-18677
-
-
Wu, X.1
Bradley, M.J.2
Cai, Y.3
Kümmel, D.4
De La Cruz, E.M.5
Barr, F.A.6
Reinisch, K.M.7
-
48
-
-
77958471298
-
Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors
-
Yoshimura, S., A. Gerondopoulos, A. Linford, D.J. Rigden, and F.A. Barr. 2010. Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J. Cell Biol. 191:367-381. http://dx.doi.org/10.1083/jcb.201008051
-
(2010)
J. Cell Biol.
, vol.191
, pp. 367-381
-
-
Yoshimura, S.1
Gerondopoulos, A.2
Linford, A.3
Rigden, D.J.4
Barr, F.A.5
|