메뉴 건너뛰기




Volumn 37, Issue , 2014, Pages 26-33

The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium

Author keywords

Fractional turbulent flow model; Mixed monotone operator; Uniqueness

Indexed keywords

FIXED POINT ARITHMETIC; POROUS MATERIALS;

EID: 84902073609     PISSN: 08939659     EISSN: 18735452     Source Type: Journal    
DOI: 10.1016/j.aml.2014.05.002     Document Type: Article
Times cited : (135)

References (23)
  • 1
    • 84897373896 scopus 로고    scopus 로고
    • Pricing European option under the time-changed mixed Brownian-fractional Brownian model
    • Z. Guo, and H. Yuan Pricing European option under the time-changed mixed Brownian-fractional Brownian model Physica A 406 2014 73 79
    • (2014) Physica A , vol.406 , pp. 73-79
    • Guo, Z.1    Yuan, H.2
  • 2
    • 84892517368 scopus 로고    scopus 로고
    • Lattice model of fractional gradient and integral elasticity:long-range interaction of Grnwald-Letnikov-Riesz type
    • V. Tarasov Lattice model of fractional gradient and integral elasticity:long-range interaction of Grnwald-Letnikov-Riesz type Mech. Mater. 70 2014 106 114
    • (2014) Mech. Mater. , vol.70 , pp. 106-114
    • Tarasov, V.1
  • 3
    • 84902073528 scopus 로고    scopus 로고
    • The fractional-order SIS epidemic model with variable population size
    • H. El-Saka The fractional-order SIS epidemic model with variable population size J. Egyptian Math. Soc. 22 2014 50 54
    • (2014) J. Egyptian Math. Soc. , vol.22 , pp. 50-54
    • El-Saka, H.1
  • 4
    • 84883469354 scopus 로고    scopus 로고
    • Fractional time-dependent deformation component models for characterizing viscoelastic Poisson's ratio
    • D. Yin, X. Duan, and X. Zhou Fractional time-dependent deformation component models for characterizing viscoelastic Poisson's ratio Eur. J. Mech. A Solids 42 2013 422 429
    • (2013) Eur. J. Mech. A Solids , vol.42 , pp. 422-429
    • Yin, D.1    Duan, X.2    Zhou, X.3
  • 5
    • 84876492389 scopus 로고    scopus 로고
    • The multiscale stochastic model of Fractional Hereditary Materials (FHM)
    • M. Paola, and M. Zingales The multiscale stochastic model of Fractional Hereditary Materials (FHM) Procedia IUTAM 6 2013 50 59
    • (2013) Procedia IUTAM , vol.6 , pp. 50-59
    • Paola, M.1    Zingales, M.2
  • 6
    • 84881475755 scopus 로고    scopus 로고
    • Fractional differential equations and related exact mechanical models
    • M. Paola, F. Pinnola, and M. Zingales Fractional differential equations and related exact mechanical models Comput. Math. Appl. 66 2013 608 620
    • (2013) Comput. Math. Appl. , vol.66 , pp. 608-620
    • Paola, M.1    Pinnola, F.2    Zingales, M.3
  • 7
    • 84885435256 scopus 로고    scopus 로고
    • Fractional dynamical model for the generation of ECG like signals from filtered coupled Van-der
    • S. Das, and K. Maharatna Fractional dynamical model for the generation of ECG like signals from filtered coupled Van-der Comput. Methods Programs Biomed. 122 2013 490 507
    • (2013) Comput. Methods Programs Biomed. , vol.122 , pp. 490-507
    • Das, S.1    Maharatna, K.2
  • 8
    • 84890291617 scopus 로고    scopus 로고
    • Fractional viscoplasticity
    • W. Sumelka Fractional viscoplasticity Mech. Res. Commun. 56 2014 31 36
    • (2014) Mech. Res. Commun. , vol.56 , pp. 31-36
    • Sumelka, W.1
  • 9
    • 84884361585 scopus 로고    scopus 로고
    • A non-local model of thermal energy transport: The fractional temperature equation
    • M. Mongiovi, and M. Zingales A non-local model of thermal energy transport: the fractional temperature equation Int. J. Heat Mass Transfer 67 2013 593 601
    • (2013) Int. J. Heat Mass Transfer , vol.67 , pp. 593-601
    • Mongiovi, M.1    Zingales, M.2
  • 11
    • 8544248448 scopus 로고
    • Free modes splitting and alterations of electro chemically polarizable media
    • M. Caputo Free modes splitting and alterations of electro chemically polarizable media Rend Fis. Acc. Lincei 4 1993 89
    • (1993) Rend Fis. Acc. Lincei , vol.4 , pp. 89
    • Caputo, M.1
  • 12
    • 84855198120 scopus 로고    scopus 로고
    • Multiple positive solutions of a singular fractional differential equation with negatively perturbed term
    • X. Zhang, L. Liu, and Y. Wu Multiple positive solutions of a singular fractional differential equation with negatively perturbed term Math. Comput. Modelling 55 2012 1263 1274
    • (2012) Math. Comput. Modelling , vol.55 , pp. 1263-1274
    • Zhang, X.1    Liu, L.2    Wu, Y.3
  • 13
    • 78651230726 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions
    • C. Goodrich Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions Comput. Math. Appl. 61 2011 191 202
    • (2011) Comput. Math. Appl. , vol.61 , pp. 191-202
    • Goodrich, C.1
  • 14
    • 80053944527 scopus 로고    scopus 로고
    • Positive solutions to boundary value problems with nonlinear boundary conditions
    • C. Goodrich Positive solutions to boundary value problems with nonlinear boundary conditions Nonlinear Anal. 75 2012 417 432
    • (2012) Nonlinear Anal. , vol.75 , pp. 417-432
    • Goodrich, C.1
  • 15
    • 84963166650 scopus 로고
    • Fixed points of mixed monotone operators with application
    • D. Guo Fixed points of mixed monotone operators with application Appl. Anal. 34 1988 215 224
    • (1988) Appl. Anal. , vol.34 , pp. 215-224
    • Guo, D.1
  • 16
    • 77953686973 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations
    • M. Rehman, and R. Khan Existence and uniqueness of solutions for multi-point boundary value problems for fractional differential equations Appl. Math. Lett. 23 2010 1038 1044
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1038-1044
    • Rehman, M.1    Khan, R.2
  • 19
    • 25144460994 scopus 로고    scopus 로고
    • Positive solutions for boundary value problem of nonlinear fractional differential equation
    • Z. Bai, and H. Lv Positive solutions for boundary value problem of nonlinear fractional differential equation J. Math. Anal. Appl. 311 2005 495 505
    • (2005) J. Math. Anal. Appl. , vol.311 , pp. 495-505
    • Bai, Z.1    Lv, H.2
  • 20
    • 67349087696 scopus 로고    scopus 로고
    • Nonlocal conjugate type boundary value problems of higher order
    • J. Webb Nonlocal conjugate type boundary value problems of higher order Nonlinear Anal. 71 2009 1933 1940
    • (2009) Nonlinear Anal. , vol.71 , pp. 1933-1940
    • Webb, J.1
  • 21
    • 80955166213 scopus 로고    scopus 로고
    • Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations
    • X. Zhang, and Y. Han Existence and uniqueness of positive solutions for higher order nonlocal fractional differential equations Appl. Math. Lett. 25 2012 555 560
    • (2012) Appl. Math. Lett. , vol.25 , pp. 555-560
    • Zhang, X.1    Han, Y.2
  • 22
    • 84655160882 scopus 로고    scopus 로고
    • Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems
    • C. Zhai, and M. Hao Fixed point theorems for mixed monotone operators with perturbation and applications to fractional differential equation boundary value problems Nonlinear Anal. 75 2012 2542 2551
    • (2012) Nonlinear Anal. , vol.75 , pp. 2542-2551
    • Zhai, C.1    Hao, M.2
  • 23
    • 0001396368 scopus 로고
    • Coupled fixed points of nonlinear operators with applications
    • D. Guo, and V. Lakshmikantham Coupled fixed points of nonlinear operators with applications Nonlinear Anal. 11 1987 623 632
    • (1987) Nonlinear Anal. , vol.11 , pp. 623-632
    • Guo, D.1    Lakshmikantham, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.