메뉴 건너뛰기




Volumn 7, Issue 19, 2014, Pages 3978-3982

Firefly algorithm with artificial neural network for time series problems

Author keywords

Artifitail neural networks; Firefly algorithm; Time series problems

Indexed keywords


EID: 84901989876     PISSN: 20407459     EISSN: 20407467     Source Type: Journal    
DOI: 10.19026/rjaset.7.757     Document Type: Article
Times cited : (45)

References (17)
  • 1
    • 77953767879 scopus 로고    scopus 로고
    • Automatic Parameter Settings for the PROAFTN Classifier using Hybrid Particle Swarm Optimization
    • In: Farzinder, A. and V. Keselj (Eds.), LNAI 6085, Springer-Verlag, Berlin, Heidelberg
    • Al-Obeidat, F., N. Belacel, J. Carretero and P. Mahanti, 2010. Automatic Parameter Settings for the PROAFTN Classifier using Hybrid Particle Swarm Optimization. In: Farzinder, A. and V. Keselj (Eds.), Canadian AI 2010. LNAI 6085, Springer-Verlag, Berlin, Heidelberg, pp: 184-195.
    • (2010) Canadian AI 2010 , pp. 184-195
    • Al-Obeidat, F.1    Belacel, N.2    Carretero, J.3    Mahanti, P.4
  • 2
    • 84863606098 scopus 로고    scopus 로고
    • Application of the firefly algorithm for solving the economic emissions load dispatch problem
    • Article ID 523806
    • Apostolopoulos, T. and A. Vlachos, 2011. Application of the firefly algorithm for solving the economic emissions load dispatch problem. Int. J. Combinat., Article ID 523806, pp: 1-23.
    • (2011) Int. J. Combinat. , pp. 1-23
    • Apostolopoulos, T.1    Vlachos, A.2
  • 3
    • 78649672225 scopus 로고    scopus 로고
    • A review on time series data mining
    • Fu, T.C., 2011. A review on time series data mining. Eng. Appl. Artif. Intel., 24(1): 164-181.
    • (2011) Eng. Appl. Artif. Intel. , vol.24 , Issue.1 , pp. 164-181
    • Fu, T.C.1
  • 4
    • 80055049702 scopus 로고    scopus 로고
    • Mixed variable structural optimization using firefly algorithm
    • Gandomi, A.H., X.S. Yang and A.H. Alavi, 2011. Mixed variable structural optimization using firefly algorithm. Comput. Struct., 89: 2325-2336.
    • (2011) Comput. Struct. , vol.89 , pp. 2325-2336
    • Gandomi, A.H.1    Yang, X.S.2    Alavi, A.H.3
  • 5
    • 0030950122 scopus 로고    scopus 로고
    • The behavior of the p-value when the alternative hypothesis is true
    • Hung, H.M.J., R.T. O'Neill, P. Bauer and K. Kohne, 1997. The behavior of the p-value when the alternative hypothesis is true. Biometrics, 53(1): 11-22.
    • (1997) Biometrics , vol.53 , Issue.1 , pp. 11-22
    • Hung, H.M.J.1    O'Neill, R.T.2    Bauer, P.3    Kohne, K.4
  • 6
    • 0037239496 scopus 로고    scopus 로고
    • Recurrent neural networks for time series classification
    • Hüsken, M. and P. Stagge, 2003. Recurrent neural networks for time series classification. Neurocomputing, 50: 223-235.
    • (2003) Neurocomputing , vol.50 , pp. 223-235
    • Hüsken, M.1    Stagge, P.2
  • 7
    • 85040241330 scopus 로고    scopus 로고
    • Dimensionality reduction for fast similarity search in large time series databases
    • Keogh, E., K. Chakrabarti, M. Pazzani and S. Mehrotra, 2001. Dimensionality reduction for fast similarity search in large time series databases. Knowl. Inform. Syst., 3(3): 263-286.
    • (2001) Knowl. Inform. Syst. , vol.3 , Issue.3 , pp. 263-286
    • Keogh, E.1    Chakrabarti, K.2    Pazzani, M.3    Mehrotra, S.4
  • 10
    • 70450219535 scopus 로고    scopus 로고
    • Firefly Algorithm for Continuous Constrained Optimization Tasks
    • In: Nguyen, N.T., R. Kowalczyk and S.M. Chen (Eds.), LNAI 5796, Springer-Verlag, Berlin, Heidelberg
    • Łukasik, S. and S. Zak, 2009. Firefly Algorithm for Continuous Constrained Optimization Tasks. In: Nguyen, N.T., R. Kowalczyk and S.M. Chen (Eds.), ICCCI 2009. LNAI 5796, Springer-Verlag, Berlin, Heidelberg, pp: 97-106.
    • (2009) ICCCI 2009 , pp. 97-106
    • Łukasik, S.1    Zak, S.2
  • 11
    • 84943160066 scopus 로고    scopus 로고
    • Artificial Neural Network Learning: A Comparative Review
    • In: Vlahavas, I.P. and C.D. Spyropoulos (Eds.), LNAI 2308, Springer-Verlag, Berlin, Heidelberg
    • Neocleous, C. and C. Schizas, 2002. Artificial Neural Network Learning: A Comparative Review. In: Vlahavas, I.P. and C.D. Spyropoulos (Eds.), SENT 2002. LNAI 2308, Springer-Verlag, Berlin, Heidelberg, pp: 300-313.
    • (2002) SENT 2002 , pp. 300-313
    • Neocleous, C.1    Schizas, C.2
  • 12
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., G.E. Hintont and R.J. Williams, 1986. Learning representations by back-propagating errors. Nature, 323(6088): 533-536.
    • (1986) Nature , vol.323 , Issue.6088 , pp. 533-536
    • Rumelhart, D.E.1    Hintont, G.E.2    Williams, R.J.3
  • 13
    • 79960566619 scopus 로고    scopus 로고
    • A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems
    • Sayadi, M.K., R. Ramezanian and N. Ghaffari-Nasab, 2010. A discrete firefly meta-heuristic with local search for makespan minimization in permutation flow shop scheduling problems. Int. J. Ind. Eng. Comput., 1(1): 1-10.
    • (2010) Int. J. Ind. Eng. Comput. , vol.1 , Issue.1 , pp. 1-10
    • Sayadi, M.K.1    Ramezanian, R.2    Ghaffari-Nasab, N.3
  • 14
    • 77957863557 scopus 로고    scopus 로고
    • Firefly algorithms for multimodal optimization
    • Yang, X.S. 2009. Firefly algorithms for multimodal optimization. Lect. Notes Comput. Sci., 5792: 169-178.
    • (2009) Lect. Notes Comput. Sci. , vol.5792 , pp. 169-178
    • Yang, X.S.1
  • 15
    • 77951678636 scopus 로고    scopus 로고
    • Yang, X.S. and S. Deb
    • In: Gonzalez, J.R. et al. (Eds.), Springer, Berlin
    • Yang, X.S. and S. Deb, 2010. Eagle Strategy Using Lévy Walk and Firefly Algorithms for Stochastic Optimization. In: Gonzalez, J.R. et al. (Eds.), Nature Inspired Cooperative Strategies for Optimization (NICSO, 2010). Springer, Berlin, 284: 101-111.
    • (2010) Nature Inspired Cooperative Strategies for Optimization (NICSO, 2010) , vol.284 , pp. 101-111
  • 17
    • 0032640524 scopus 로고    scopus 로고
    • Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis
    • Zhang, G., 1999. Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. Eur. J. Oper. Res., 116(1): 16-32.
    • (1999) Eur. J. Oper. Res. , vol.116 , Issue.1 , pp. 16-32
    • Zhang, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.