메뉴 건너뛰기




Volumn 5, Issue , 2014, Pages

Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis

Author keywords

[No Author keywords available]

Indexed keywords

ALCOHOL; ELECTROLYTE; HYDROGEN; NANOPARTICLE; NANOTUBE; PALLADIUM; PROTON; TITANIUM DIOXIDE; WATER;

EID: 84901914942     PISSN: None     EISSN: 20411723     Source Type: Journal    
DOI: 10.1038/ncomms5036     Document Type: Article
Times cited : (377)

References (29)
  • 1
    • 84870686748 scopus 로고    scopus 로고
    • Sustainability study of hydrogen pathways for fuel cell vehicle applications
    • Hwang, J. J. Sustainability study of hydrogen pathways for fuel cell vehicle applications. Renew. Sust. Energ. Rev. 19, 220-229 (2013).
    • (2013) Renew. Sust. Energ. Rev. , vol.19 , pp. 220-229
    • Hwang, J.J.1
  • 2
    • 77953928490 scopus 로고    scopus 로고
    • Electromobility with fuel cells and batteries: Advantages for the use of hydrogen
    • Grube, T. & Stolten, D. Electromobility with fuel cells and batteries: Advantages for the use of hydrogen. BWK-Energie-Fachmagazin 62, S16-S17 (2010).
    • (2010) BWK-Energie-Fachmagazin , vol.62
    • Grube, T.1    Stolten, D.2
  • 3
    • 4043112177 scopus 로고    scopus 로고
    • Sustainable hydrogen production
    • DOI 10.1126/science.1103197
    • Turner, J. A. Sustainable hydrogen production. Science 305, 972-974 (2004). (Pubitemid 39071763)
    • (2004) Science , vol.305 , Issue.5686 , pp. 972-974
    • Turner, J.A.1
  • 4
    • 84901950932 scopus 로고    scopus 로고
    • Fuel Cell Technologies Office. Development and Demonstration Plan of the US Department of Energy (2011)
    • Fuel Cell Technologies Office. Fuel cells, Fuel Cell Technologies Office Multi-year Research, Development and Demonstration Plan of the US Department of Energy (2011).
    • Fuel Cells, Fuel Cell Technologies Office Multi-year Research
  • 5
    • 84866362249 scopus 로고    scopus 로고
    • Advanced alkaline water electrolysis
    • Marini, S. et al. Advanced alkaline water electrolysis. Electrochim. Acta 82, 384-391 (2012).
    • (2012) Electrochim. Acta , vol.82 , pp. 384-391
    • Marini, S.1
  • 8
    • 15344348475 scopus 로고    scopus 로고
    • On the use of ammonia electrolysis for hydrogen production
    • Vitse, F., Cooper, M. & Botte, G. G. On the use of ammonia electrolysis for hydrogen production. J. Power Sources 142, 18-26 (2005).
    • (2005) J. Power Sources , vol.142 , pp. 18-26
    • Vitse, F.1    Cooper, M.2    Botte, G.G.3
  • 9
    • 33845674118 scopus 로고    scopus 로고
    • Hydrogen production by methanol-water solution electrolysis
    • DOI 10.1016/j.jpowsour.2006.10.011, PII S037877530602088X
    • Take, T., Tsurutani, K. & Umeda, M. Hydrogen production by methanol-water solution electrolysis. J. Power Sources 164, 9-16 (2007). (Pubitemid 44959650)
    • (2007) Journal of Power Sources , vol.164 , Issue.1 , pp. 9-16
    • Take, T.1    Tsurutani, K.2    Umeda, M.3
  • 10
    • 84881169131 scopus 로고    scopus 로고
    • Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a proton exchange membrane electrolysis cell (PEMEC): Effect of the nature and structure of the catalytic anode
    • Lamy, C., Jaubert, T., Baranton, S. & Coutanceau, C. Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a proton exchange membrane electrolysis cell (PEMEC): effect of the nature and structure of the catalytic anode. J. Power Sources 245, 927-936 (2014).
    • (2014) J. Power Sources , vol.245 , pp. 927-936
    • Lamy, C.1    Jaubert, T.2    Baranton, S.3    Coutanceau, C.4
  • 11
    • 77956447259 scopus 로고    scopus 로고
    • Self-sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis
    • Bambagioni, V. et al. Self-sustainable production of hydrogen, chemicals, and energy from renewable alcohols by electrocatalysis. ChemSusChem 3, 851-855 (2010).
    • (2010) ChemSusChem , vol.3 , pp. 851-855
    • Bambagioni, V.1
  • 12
    • 84861201989 scopus 로고    scopus 로고
    • Electrochemical reforming of ethanol-water solutions for pure H-2 production in a PEM electrolysis cell
    • Caravaca, A. et al. Electrochemical reforming of ethanol-water solutions for pure H-2 production in a PEM electrolysis cell. Int. J. Hydrogen Energ. 37, 9504-9513 (2012).
    • (2012) Int. J. Hydrogen Energ. , vol.37 , pp. 9504-9513
    • Caravaca, A.1
  • 13
    • 84873715542 scopus 로고    scopus 로고
    • From biomass to pure hydrogen: Electrochemical reforming of bio-ethanol in a PEM electrolyser
    • Caravaca, A. et al. From biomass to pure hydrogen: Electrochemical reforming of bio-ethanol in a PEM electrolyser. Appl. Catal. B-Environ. 134, 302-309 (2013).
    • (2013) Appl. Catal. B-Environ. , vol.134 , pp. 302-309
    • Caravaca, A.1
  • 14
    • 50849136177 scopus 로고    scopus 로고
    • Production of hydrogen by the electrochemical reforming of glycerol-water solutions in a PEM electrolysis cell
    • Marshall, A. T. & Haverkamp, R. G. Production of hydrogen by the electrochemical reforming of glycerol-water solutions in a PEM electrolysis cell. Int. J. Hydrogen Energ. 33, 4649-4654 (2008).
    • (2008) Int. J. Hydrogen Energ. , vol.33 , pp. 4649-4654
    • Marshall, A.T.1    Haverkamp, R.G.2
  • 15
    • 79451468733 scopus 로고    scopus 로고
    • Electrochemical reforming of an acidic aqueous glycerol solution on Pt electrodes
    • Kongjao, S., Damronglerd, S. & Hunsom, M. Electrochemical reforming of an acidic aqueous glycerol solution on Pt electrodes. J. Appl. Electrochem. 41, 215-222 (2011).
    • (2011) J. Appl. Electrochem. , vol.41 , pp. 215-222
    • Kongjao, S.1    Damronglerd, S.2    Hunsom, M.3
  • 16
    • 84866290236 scopus 로고    scopus 로고
    • Electrochemical decomposition of urea with Ni-based catalysts
    • Yan, W., Wang, D. & Botte, G. G. Electrochemical decomposition of urea with Ni-based catalysts. Appl. Catal. B-Environ. 127, 221-226 (2012).
    • (2012) Appl. Catal. B-Environ. , vol.127 , pp. 221-226
    • Yan, W.1    Wang, D.2    Botte, G.G.3
  • 17
    • 84865062775 scopus 로고    scopus 로고
    • Electrochemical milling and faceting: Size reduction and catalytic activation of palladium nanoparticles
    • Chen, Y. X. et al. Electrochemical milling and faceting: Size reduction and catalytic activation of palladium nanoparticles. Angew. Chem. Int. Ed. 51, 8500-8504 (2012).
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 8500-8504
    • Chen, Y.X.1
  • 18
    • 19344377496 scopus 로고    scopus 로고
    • 2 nanotube catalysts for methanol electro-oxidation
    • DOI 10.1016/j.jssc.2005.04.006, PII S0022459605001544
    • Wang, M., Guo, D. J. & Li, H. I. High Activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation. J. Solid State Chem. 178, 1996-2000 (2005). (Pubitemid 40718249)
    • (2005) Journal of Solid State Chemistry , vol.178 , Issue.6 , pp. 1996-2000
    • Wang, M.1    Guo, D.-J.2    Li, H.-L.3
  • 19
    • 76849104821 scopus 로고    scopus 로고
    • Year in review-EROI or energy return on (energy) invested
    • Murphy, D. J. & Hall, C. A. S. Year in review-EROI or energy return on (energy) invested. Ann. N. Y. Acad. Sci. 1185, 102-118 (2010).
    • (2010) Ann. N. Y. Acad. Sci. , vol.1185 , pp. 102-118
    • Murphy, D.J.1    Hall, C.A.S.2
  • 20
    • 33744986005 scopus 로고    scopus 로고
    • 2 nanotube arrays: Fabrication, material properties, and solar energy applications
    • DOI 10.1016/j.solmat.2006.04.007, PII S0927024806001693
    • Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K. & Grimes, C. A. A review on highly ordered, vertically oriented TiO 2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energ. Mat. Sol. C. 90, 2011-2075 (2006). (Pubitemid 43868076)
    • (2006) Solar Energy Materials and Solar Cells , vol.90 , Issue.14 , pp. 2011-2075
    • Mor, G.K.1    Varghese, O.K.2    Paulose, M.3    Shankar, K.4    Grimes, C.A.5
  • 21
    • 49349112126 scopus 로고    scopus 로고
    • Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption
    • Grdeń, M., ?ukaszewski, M., Jerkiewicz, G. & Czerwiński, A. Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption. Electrochim. Acta 53, 7583-7598 (2008).
    • (2008) Electrochim. Acta , vol.53 , pp. 7583-7598
    • Grdeń, M.1    Ukaszewski, M.2    Jerkiewicz, G.3    Czerwiński, A.4
  • 22
    • 77956482482 scopus 로고    scopus 로고
    • Sodium borohydride as an additive to enhance the performance of direct ethanol fuel cells
    • Wang, L. et al. Sodium borohydride as an additive to enhance the performance of direct ethanol fuel cells. J. Power Sources 195, 8036-8043 (2010).
    • (2010) J. Power Sources , vol.195 , pp. 8036-8043
    • Wang, L.1
  • 23
    • 71549126543 scopus 로고    scopus 로고
    • An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution
    • Fang, X., Wang, L., Shen, P. K., Cui, G. & Bianchini, C. An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution. J. Power Sources 195, 1375-1378 (2010).
    • (2010) J. Power Sources , vol.195 , pp. 1375-1378
    • Fang, X.1    Wang, L.2    Shen, P.K.3    Cui, G.4    Bianchini, C.5
  • 27
    • 33846980741 scopus 로고    scopus 로고
    • Ethanol for a sustainable energy future
    • Goldemberg, J. Ethanol for a sustainable energy future. Science 315, 808-810 (2007).
    • (2007) Science , vol.315 , pp. 808-810
    • Goldemberg, J.1
  • 28
    • 84867395141 scopus 로고    scopus 로고
    • Seeking to understand the reasons for different energy return on investment (EROI) estimates for biofuels
    • Hall, C. A. S., Dale, B. E. & Pimentel, D. Seeking to understand the reasons for different energy return on investment (EROI) estimates for biofuels. Sustainability 3, 2413-2432 (2011).
    • (2011) Sustainability , vol.3 , pp. 2413-2432
    • Hall, C.A.S.1    Dale, B.E.2    Pimentel, D.3
  • 29
    • 33846368468 scopus 로고    scopus 로고
    • The U.S. Department of Energy's National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements
    • DOI 10.1016/j.cattod.2006.09.022, PII S0920586106006146
    • Satyapal, S., Petrovic, J., Read, C., Thomas, G. & Ordaz, G. The U. S. Department of Energy's National Hydrogen Storage Project: progress towards meeting hydrogen-powered vehicle requirements. Catal. Today 120, 246-256 (2007). (Pubitemid 46135909)
    • (2007) Catalysis Today , vol.120 , pp. 246-256
    • Satyapal, S.1    Petrovic, J.2    Read, C.3    Thomas, G.4    Ordaz, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.