메뉴 건너뛰기




Volumn 54, Issue , 2013, Pages 298-309

Feature selection via maximizing global information gain for text classification

Author keywords

Distributional clustering; Feature selection; High dimensionality; Information bottleneck; Text classification

Indexed keywords

FEATURE EXTRACTION; REDUNDANCY; TEXT PROCESSING;

EID: 84901812079     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2013.09.019     Document Type: Article
Times cited : (133)

References (30)
  • 1
    • 0001673996 scopus 로고    scopus 로고
    • A comparison of event models for naive bayes text classification
    • Citeseer
    • A. McCallum, K. Nigam, A comparison of event models for naive bayes text classification, in: AAAI-98 Workshop on Learning for Text Categorization, Vol. 752, Citeseer, 1998, pp. 41-48.
    • (1998) AAAI-98 Workshop on Learning for Text Categorization , vol.752 , pp. 41-48
    • McCallum, A.1    Nigam, K.2
  • 2
    • 84957069091 scopus 로고    scopus 로고
    • Naive (bayes) at forty: The independence assumption in information retrieval
    • D. Lewis, Naive (bayes) at forty: the independence assumption in information retrieval, Machine Learning ECML-98 (1998) 4-15.
    • (1998) Machine Learning , vol.ECML-98 , pp. 4-15
    • Lewis, D.1
  • 3
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • T. Joachims, Text categorization with support vector machines: learning with many relevant features, Machine learning ECML-98 (1998) 137-142.
    • (1998) Machine Learning , vol.ECML-98 , pp. 137-142
    • Joachims, T.1
  • 5
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • Morgan Kaufmann Publishers, Inc.
    • Y. Yang, J. Pedersen, A comparative study on feature selection in text categorization, in: Machine Learning-Internatinal Workshop then Conference, Morgan Kaufmann Publishers, Inc., 1997, pp. 412-420.
    • (1997) Machine Learning-Internatinal Workshop then Conference , pp. 412-420
    • Yang, Y.1    Pedersen, J.2
  • 6
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. Quinlan, Induction of decision trees, Machine Learning 1 (1) (1986) 81-106.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.1
  • 8
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, C. Ding, Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy, IEEE Transactions on Pattern Analysis and Machine Intelligence 27 (2005) 1226-1238.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 9
    • 84898987386 scopus 로고    scopus 로고
    • Data visualization and feature selection: New algorithms for Nongaussian data
    • MIT Press
    • H.H. Yang, J. Moody, Data visualization and feature selection: new algorithms for nongaussian data, in: Advances in Neural Information Processing Systems, MIT Press, 1999, pp. 687-693.
    • (1999) Advances in Neural Information Processing Systems , pp. 687-693
    • Yang, H.H.1    Moody, J.2
  • 10
    • 33745799421 scopus 로고    scopus 로고
    • On the use of variable complementarity for feature selection in cancer classification
    • P. Meyer, G. Bontempi, On the use of variable complementarity for feature selection in cancer classification, Applications of Evolutionary Computing (2006) 91-102.
    • (2006) Applications of Evolutionary Computing , pp. 91-102
    • Meyer, P.1    Bontempi, G.2
  • 11
    • 47049102021 scopus 로고    scopus 로고
    • Information-theoretic feature selection in micoarray data using variable complementarity
    • P. Meyer, G. Bontempi, Information-theoretic feature selection in micoarray data using variable complementarity, IEEE Journal of Selected Topics in Singal Processing 2 (2008) 261-274.
    • (2008) IEEE Journal of Selected Topics in Singal Processing , vol.2 , pp. 261-274
    • Meyer, P.1    Bontempi, G.2
  • 17
    • 0036993190 scopus 로고    scopus 로고
    • Unsupervised document classification using sequential information maximization
    • ACM Press
    • N. Slonim, N. Tishby, Unsupervised document classification using sequential information maximization, in: ACM SIGIR 2002, ACM Press, 2002, pp. 129-136.
    • (2002) ACM SIGIR 2002 , pp. 129-136
    • Slonim, N.1    Tishby, N.2
  • 18
    • 2942723846 scopus 로고    scopus 로고
    • A divisive information theoretic feature clustering algorithm for text classification
    • I. Dhillon, S. Mallela, R. Kumar, A divisive information theoretic feature clustering algorithm for text classification, The Journal of Machine Learning Research 3 (2003) 1265-1287.
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 1265-1287
    • Dhillon, I.1    Mallela, S.2    Kumar, R.3
  • 21
    • 84863403768 scopus 로고    scopus 로고
    • Conditional likelihood maximisation: A unifying framework for information theoretic feature selection
    • G. Brown, A. Pocock, M. Zhao, M. Luján, Conditional likelihood maximisation: a unifying framework for information theoretic feature selection, The Journal of Machine Learning Research 13 (2012) 27-66.
    • (2012) The Journal of Machine Learning Research , vol.13 , pp. 27-66
    • Brown, G.1    Pocock, A.2    Zhao, M.3    Luján, M.4
  • 23
    • 0025952277 scopus 로고
    • Divergence measures based on the shannon entropy
    • J. Lin, Divergence measures based on the shannon entropy, IEEE Transactions on Information Theory 37 (1) (1991) 145-151.
    • (1991) IEEE Transactions on Information Theory , vol.37 , Issue.1 , pp. 145-151
    • Lin, J.1
  • 26
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos, M. Pazzani, On the optimality of the simple bayesian classifier under zero-one loss, Machine Learning 29 (2) (1997) 103-130.
    • (1997) Machine Learning , vol.29 , Issue.2 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 27
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curse-of-dimensionality
    • J. Friedman, On bias, variance, 0/1-loss, and the curse-of- dimensionality, Data Mining and Knowledge Discovery 1 (1) (1997) 55-77.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.1 , pp. 55-77
    • Friedman, J.1
  • 30


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.