-
1
-
-
0036568025
-
Finite-time analysis of the multiarmed bandit problem
-
DOI 10.1023/A:1013689704352, Computational Learning Theory
-
P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Machine Learning, 47(2):235-256, 2002. (Pubitemid 34126111)
-
(2002)
Machine Learning
, vol.47
, Issue.2-3
, pp. 235-256
-
-
Auer, P.1
Cesa-Bianchi, N.2
Fischer, P.3
-
2
-
-
0037709910
-
The nonstochastic multiarmed bandit problem
-
P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit problem. SIAM Journal on Computing, 32(1):48-77, 2003.
-
(2003)
SIAM Journal on Computing
, vol.32
, Issue.1
, pp. 48-77
-
-
Auer, P.1
Cesa-Bianchi, N.2
Freund, Y.3
Schapire, R.E.4
-
5
-
-
77956554273
-
Fast Boosting using adversarial bandits
-
R. Busa-Fekete and B. Kegl. Fast Boosting using adversarial bandits. In ICML, 2010.
-
(2010)
ICML
-
-
Busa-Fekete, R.1
Kegl, B.2
-
9
-
-
37049036831
-
Priority sampling for estimation of arbitrary subset sums
-
December
-
N. Dufield, C. Lund, and M. Thorup. Priority sampling for estimation of arbitrary subset sums. J. ACM, 54, December 2007.
-
(2007)
J ACM
, vol.54
-
-
Dufield, N.1
Lund, C.2
Thorup, M.3
-
11
-
-
84932617705
-
Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories
-
L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In CVPR, Workshop on Generative-Model Based Vision, 2004. http://www.vision.caltech.edu/ Image-Datasets/Caltech101/.
-
(2004)
CVPR, Workshop on Generative-Model Based Vision
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
13
-
-
80055083194
-
Comparing ma- chines and humans on a visual categorization test
-
F. Fleuret, T. Li, C. Dubout, E. K. Wampler, S. Yantis, and D. Geman. Comparing ma- chines and humans on a visual categorization test. Proceedings of the National Academy of Sciences, 108(43):17621-17625, 2011.
-
(2011)
Proceedings of the National Academy of Sciences
, vol.108
, Issue.43
, pp. 17621-17625
-
-
Fleuret, F.1
Li, T.2
Dubout, C.3
Wampler, E.K.4
Yantis, S.5
Geman, D.6
-
17
-
-
77956002520
-
Learning multiple layers of features from tiny images
-
A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report, 2009. http://www.cs.toronto.edu/~kriz/cifar.html.
-
(2009)
Technical Report
-
-
Krizhevsky, A.1
-
18
-
-
0032203257
-
Gradient-based learning applied to doc- ument recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to doc- ument recognition. In Proceedings of the IEEE, volume 86(11), pages 2278-2324, 1998. http://yann.lecun.com/exdb/mnist/.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
19
-
-
31544472083
-
Generic object recognition with boosting
-
DOI 10.1109/TPAMI.2006.54
-
A. Opelt, A. Pinz, M. Fussenegger, and P. Auer. Generic object recognition with Boosting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28:416-431, 2006. (Pubitemid 43159637)
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.3
, pp. 416-431
-
-
Opelt, A.1
Pinz, A.2
Fussenegger, M.3
Auer, P.4
-
20
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
DOI 10.1023/A:1007614523901
-
R. E. Schapire and Y. Singer. Improved boosting algorithms using condence-rated predic- tions. Machine learning, 37(3):297-336, 1999. (Pubitemid 32210620)
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
|