메뉴 건너뛰기




Volumn 69, Issue , 2014, Pages 638-647

Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey

Author keywords

Artificial bee colony algorithm; Hydropower generation; Neural networks; Turkey

Indexed keywords

ELECTRICITY; ENERGY UTILIZATION; EVOLUTIONARY ALGORITHMS; GEOTHERMAL ENERGY; INVESTMENTS; NEURAL NETWORKS; OPTIMIZATION; RENEWABLE ENERGY RESOURCES; ALGORITHMS; BACKPROPAGATION; BACKPROPAGATION ALGORITHMS; HYDROELECTRIC POWER;

EID: 84901497530     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2014.03.059     Document Type: Article
Times cited : (77)

References (72)
  • 1
    • 42949138115 scopus 로고    scopus 로고
    • Hydropower in Turkey for a clean and sustainable energy future
    • Yuksel I. Hydropower in Turkey for a clean and sustainable energy future. Renew Sustain Energy Rev 2008, 12:1622-1640.
    • (2008) Renew Sustain Energy Rev , vol.12 , pp. 1622-1640
    • Yuksel, I.1
  • 2
    • 59249090677 scopus 로고    scopus 로고
    • Estimating the net electricity energy generation and demand using the ant colony optimization approach: case of Turkey
    • Toksari M.D. Estimating the net electricity energy generation and demand using the ant colony optimization approach: case of Turkey. Energy Policy 2009, 37:1181-1187.
    • (2009) Energy Policy , vol.37 , pp. 1181-1187
    • Toksari, M.D.1
  • 3
    • 80052860328 scopus 로고    scopus 로고
    • The total electricity energy production of the world, European Union, and Turkey: projections and comparison
    • Akpinar A., Tavsan F., Komurcu M.I., Filiz M.H., Kaygusuz K. The total electricity energy production of the world, European Union, and Turkey: projections and comparison. Energy Sources 2012, 7:28-44.
    • (2012) Energy Sources , vol.7 , pp. 28-44
    • Akpinar, A.1    Tavsan, F.2    Komurcu, M.I.3    Filiz, M.H.4    Kaygusuz, K.5
  • 4
    • 84864768137 scopus 로고    scopus 로고
    • Overview of potential and utilization of renewable energy sources in Turkey
    • Toklu E. Overview of potential and utilization of renewable energy sources in Turkey. Renew Energy 2013, 50:456-463.
    • (2013) Renew Energy , vol.50 , pp. 456-463
    • Toklu, E.1
  • 5
    • 84876830619 scopus 로고    scopus 로고
    • Hydropower in Turkey: economical, social and environmental aspects and legal challenges
    • Kentel E., Alp E. Hydropower in Turkey: economical, social and environmental aspects and legal challenges. Environ Sci Policy 2013, 31:34-43.
    • (2013) Environ Sci Policy , vol.31 , pp. 34-43
    • Kentel, E.1    Alp, E.2
  • 6
    • 0034209857 scopus 로고    scopus 로고
    • Renewable energy and sustainable development: a crucial review
    • Dincer I. Renewable energy and sustainable development: a crucial review. Renew Sustain Energy Rev 2000, 4:157-175.
    • (2000) Renew Sustain Energy Rev , vol.4 , pp. 157-175
    • Dincer, I.1
  • 7
    • 70349508838 scopus 로고    scopus 로고
    • Hydropower for sustainable water and energy development
    • Yuksel I. Hydropower for sustainable water and energy development. Renew Sustain Energy Rev 2010, 14:462-469.
    • (2010) Renew Sustain Energy Rev , vol.14 , pp. 462-469
    • Yuksel, I.1
  • 8
    • 84901481643 scopus 로고    scopus 로고
    • Ministry of Energy and Natural Resources (MENR) The Presentation of The Ministry's Budget for The Year 2011 at The Plenary Session of The Turkish Grand National Assembly (TBMM). Available from: [in Turkish], [accessed 10.05.13].
    • Ministry of Energy and Natural Resources (MENR) The Presentation of The Ministry's Budget for The Year 2011 at The Plenary Session of The Turkish Grand National Assembly (TBMM). Available from: [in Turkish], [accessed 10.05.13]. http://www.enerji.gov.tr/yayinlar_raporlar/2013_Genel_Kurul_Konusmasi.pdf.
  • 9
    • 84901500563 scopus 로고    scopus 로고
    • Ministry of Energy and Natural Resources (MENR). View of energy in the world and Turkey. See also: [in Turkish], [accessed 12.05.13].
    • Ministry of Energy and Natural Resources (MENR). View of energy in the world and Turkey. See also: [in Turkish], [accessed 12.05.13]. http://www.enerji.gov.tr/yayinlar_raporlar/Dunyada_ve_Turkiyede_Enerji_Gorunumu.pdf.
  • 10
    • 84867743049 scopus 로고    scopus 로고
    • The contribution of hydropower in meeting electric energy needs: the case of Turkey
    • Akpinar A. The contribution of hydropower in meeting electric energy needs: the case of Turkey. Renew Energy 2013, 51:206-219.
    • (2013) Renew Energy , vol.51 , pp. 206-219
    • Akpinar, A.1
  • 11
    • 84865490006 scopus 로고    scopus 로고
    • Hydropower for sustainable energy development in Turkey: the small hydropower case of the eastern black sea region
    • Capik M., Yilmaz A.O., Cavusoglu I. Hydropower for sustainable energy development in Turkey: the small hydropower case of the eastern black sea region. Renew Sustain Energy Rev 2012, 16:6160-6172.
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 6160-6172
    • Capik, M.1    Yilmaz, A.O.2    Cavusoglu, I.3
  • 12
    • 0033115752 scopus 로고    scopus 로고
    • Electricity generation: a case study in turkey
    • Kaygusuz K. Electricity generation: a case study in turkey. Energy Sources 1999, 21:275-290.
    • (1999) Energy Sources , vol.21 , pp. 275-290
    • Kaygusuz, K.1
  • 13
    • 77949275746 scopus 로고    scopus 로고
    • Development of future energy scenarios with intelligent algorithms: case of hydro in turkey
    • Cinar D., Kayakutlu G., Daim T. Development of future energy scenarios with intelligent algorithms: case of hydro in turkey. Energy 2010, 35:1724-1729.
    • (2010) Energy , vol.35 , pp. 1724-1729
    • Cinar, D.1    Kayakutlu, G.2    Daim, T.3
  • 14
    • 69949163587 scopus 로고    scopus 로고
    • Energy demand estimation of South Korea using artificial neural network
    • Geem W.Z., Roper W.E. Energy demand estimation of South Korea using artificial neural network. Energy Policy 2009, 37:4049-4054.
    • (2009) Energy Policy , vol.37 , pp. 4049-4054
    • Geem, W.Z.1    Roper, W.E.2
  • 15
    • 76649131245 scopus 로고    scopus 로고
    • Greek long-term energy consumption prediction using artificial neural networks
    • Ekonomou L. Greek long-term energy consumption prediction using artificial neural networks. Energy 2010, 35:512-517.
    • (2010) Energy , vol.35 , pp. 512-517
    • Ekonomou, L.1
  • 16
    • 0036168268 scopus 로고    scopus 로고
    • Neural networks in forecasting electrical energy consumption: univariate and multivariate approaches
    • Nasr G.E., Badr E.A., Younes M.R. Neural networks in forecasting electrical energy consumption: univariate and multivariate approaches. Int J Energy Res 2002, 26:67-78.
    • (2002) Int J Energy Res , vol.26 , pp. 67-78
    • Nasr, G.E.1    Badr, E.A.2    Younes, M.R.3
  • 17
    • 33745872542 scopus 로고    scopus 로고
    • Comparing linear and nonlinear forecasts for Taiwan's electricity consumption
    • Pao H.T. Comparing linear and nonlinear forecasts for Taiwan's electricity consumption. Energy 2006, 31:2129-2141.
    • (2006) Energy , vol.31 , pp. 2129-2141
    • Pao, H.T.1
  • 18
    • 80052807923 scopus 로고    scopus 로고
    • Forecasting electricity demand in Thailand with an artificial neural network approach
    • Kandananond K. Forecasting electricity demand in Thailand with an artificial neural network approach. Energies 2011, 4:1246-1257.
    • (2011) Energies , vol.4 , pp. 1246-1257
    • Kandananond, K.1
  • 19
    • 84875814744 scopus 로고    scopus 로고
    • Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks
    • Khoshnevisan B., Rafiee S., Omid M., Yousefi M., Movahedi M. Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks. Energy 2013, 52:333-338.
    • (2013) Energy , vol.52 , pp. 333-338
    • Khoshnevisan, B.1    Rafiee, S.2    Omid, M.3    Yousefi, M.4    Movahedi, M.5
  • 20
    • 79961029951 scopus 로고    scopus 로고
    • Determination and modelling of energy consumption in wheat production using neural networks: "A case study in Canterbury province, New Zealand"
    • Safa M., Samarasinghe S. Determination and modelling of energy consumption in wheat production using neural networks: "A case study in Canterbury province, New Zealand". Energy 2011, 36:5140-5147.
    • (2011) Energy , vol.36 , pp. 5140-5147
    • Safa, M.1    Samarasinghe, S.2
  • 21
    • 0036842414 scopus 로고    scopus 로고
    • Up to year 2020 load forecasting using neural nets
    • Kermanshahi B., Iwamiya H. Up to year 2020 load forecasting using neural nets. Electr Power Energy Syst 2002, 24:789-797.
    • (2002) Electr Power Energy Syst , vol.24 , pp. 789-797
    • Kermanshahi, B.1    Iwamiya, H.2
  • 22
    • 77953324921 scopus 로고    scopus 로고
    • An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran
    • Azadeh A., Saberi M., Seraj O. An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran. Energy 2010, 35:2351-2366.
    • (2010) Energy , vol.35 , pp. 2351-2366
    • Azadeh, A.1    Saberi, M.2    Seraj, O.3
  • 23
    • 36348985409 scopus 로고    scopus 로고
    • Using adaptive network based fuzzy inference system to forecast regional electricity loads
    • Ying L.C., Pan M.C. Using adaptive network based fuzzy inference system to forecast regional electricity loads. Energy Convers Manag 2008, 49:205-211.
    • (2008) Energy Convers Manag , vol.49 , pp. 205-211
    • Ying, L.C.1    Pan, M.C.2
  • 24
    • 84871718651 scopus 로고    scopus 로고
    • Electricity demand estimation using an adaptive neuro-fuzzy network: a case study from the Ontario province-Canada
    • Zahedi G., Azizi S., Bahadori A., Elkamel A., Alwi S.R.W. Electricity demand estimation using an adaptive neuro-fuzzy network: a case study from the Ontario province-Canada. Energy 2013, 49:323-328.
    • (2013) Energy , vol.49 , pp. 323-328
    • Zahedi, G.1    Azizi, S.2    Bahadori, A.3    Elkamel, A.4    Alwi, S.R.W.5
  • 25
    • 72049112046 scopus 로고    scopus 로고
    • Estimation of electricity demand of Iran using two heuristic algorithms
    • Amjadi M.H., Nezamabadi-pour H., Farsangi M.M. Estimation of electricity demand of Iran using two heuristic algorithms. Energy Convers Manag 2010, 51:493-497.
    • (2010) Energy Convers Manag , vol.51 , pp. 493-497
    • Amjadi, M.H.1    Nezamabadi-pour, H.2    Farsangi, M.M.3
  • 26
    • 78649815601 scopus 로고    scopus 로고
    • Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran
    • Assareh E., Behrang M.A., Assari M.R., Ghanbarzadeh A. Application of PSO (particle swarm optimization) and GA (genetic algorithm) techniques on demand estimation of oil in Iran. Energy 2010, 35:5223-5229.
    • (2010) Energy , vol.35 , pp. 5223-5229
    • Assareh, E.1    Behrang, M.A.2    Assari, M.R.3    Ghanbarzadeh, A.4
  • 27
    • 34447512048 scopus 로고    scopus 로고
    • Prospects for future projections of the basic energy sources in Turkey
    • Sozen A., Arcaklioglu E. Prospects for future projections of the basic energy sources in Turkey. Energy Sources Part B 2007, 2:183-201.
    • (2007) Energy Sources Part B , vol.2 , pp. 183-201
    • Sozen, A.1    Arcaklioglu, E.2
  • 28
    • 70449399289 scopus 로고    scopus 로고
    • Future projection of the energy dependency of turkey using artificial neural network
    • Sozen A. Future projection of the energy dependency of turkey using artificial neural network. Energy Policy 2009, 37:4827-4833.
    • (2009) Energy Policy , vol.37 , pp. 4827-4833
    • Sozen, A.1
  • 29
    • 79551528411 scopus 로고    scopus 로고
    • Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables
    • Kankal M., Akpinar A., Komurcu M.I., Ozsahin T.S. Modeling and forecasting of Turkey's energy consumption using socio-economic and demographic variables. Appl Energy 2011, 88:1927-1939.
    • (2011) Appl Energy , vol.88 , pp. 1927-1939
    • Kankal, M.1    Akpinar, A.2    Komurcu, M.I.3    Ozsahin, T.S.4
  • 31
    • 33748492958 scopus 로고    scopus 로고
    • Forecasting net energy consumption using artificial neural network
    • Sozen A., Akcayol M.A., Arcaklioglu E. forecasting net energy consumption using artificial neural network. Energy Sources Part B 2006, 1:147-155.
    • (2006) Energy Sources Part B , vol.1 , pp. 147-155
    • Sozen, A.1    Akcayol, M.A.2    Arcaklioglu, E.3
  • 32
    • 34447526121 scopus 로고    scopus 로고
    • Prediction of net energy consumption based on economic indicators (gnp and gdp) in Turkey
    • Sozen A., Arcaklioglu E. Prediction of net energy consumption based on economic indicators (gnp and gdp) in Turkey. Energy Policy 2007, 35:4981-4992.
    • (2007) Energy Policy , vol.35 , pp. 4981-4992
    • Sozen, A.1    Arcaklioglu, E.2
  • 34
    • 33845252907 scopus 로고    scopus 로고
    • Forecasting of Turkey's net electricity energy consumption on sectoral bases
    • Hamzacebi C. Forecasting of Turkey's net electricity energy consumption on sectoral bases. Energy Policy 2007, 35:2009-2016.
    • (2007) Energy Policy , vol.35 , pp. 2009-2016
    • Hamzacebi, C.1
  • 35
    • 68849117417 scopus 로고    scopus 로고
    • Modeling and prediction of Turkey's electricity consumption using artificial neural networks
    • Kavaklioglu K., Ceylan H., Ozturk H.K., Canyurt O.E. Modeling and prediction of Turkey's electricity consumption using artificial neural networks. Energy Convers Manag 2009, 50:2719-2727.
    • (2009) Energy Convers Manag , vol.50 , pp. 2719-2727
    • Kavaklioglu, K.1    Ceylan, H.2    Ozturk, H.K.3    Canyurt, O.E.4
  • 36
    • 82355169491 scopus 로고    scopus 로고
    • Electric energy demands of Turkey in residential and industrial sectors
    • Bilgili M., Sahin B., Yasara A., Simsek E. Electric energy demands of Turkey in residential and industrial sectors. Renew Sustain Energy Rev 2012, 16:404-414.
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 404-414
    • Bilgili, M.1    Sahin, B.2    Yasara, A.3    Simsek, E.4
  • 37
    • 2442640511 scopus 로고    scopus 로고
    • Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach
    • Ceylan H., Ozturk H.K. Estimating energy demand of Turkey based on economic indicators using genetic algorithm approach. Energy Convers Manag 2004, 45:2525-2537.
    • (2004) Energy Convers Manag , vol.45 , pp. 2525-2537
    • Ceylan, H.1    Ozturk, H.K.2
  • 38
    • 8344249357 scopus 로고    scopus 로고
    • Energy demand estimation based on two-different genetic algorithm approach: an application of Turkey
    • Canyurt O.E., Ceylan H., Ozturk H.K., Hepbasli A. Energy demand estimation based on two-different genetic algorithm approach: an application of Turkey. Energy Sources 2004, 26:1313-1320.
    • (2004) Energy Sources , vol.26 , pp. 1313-1320
    • Canyurt, O.E.1    Ceylan, H.2    Ozturk, H.K.3    Hepbasli, A.4
  • 39
    • 18444388620 scopus 로고    scopus 로고
    • Estimating energy and exergy production and consumption values using three different genetic algorithm approaches. Part 2; application and scenarios
    • Ceylan H., Ozturk H.K., Hepbasli A., Utlu Z. Estimating energy and exergy production and consumption values using three different genetic algorithm approaches. Part 2; application and scenarios. Energy Sources 2005, 27:629-639.
    • (2005) Energy Sources , vol.27 , pp. 629-639
    • Ceylan, H.1    Ozturk, H.K.2    Hepbasli, A.3    Utlu, Z.4
  • 40
    • 42949134466 scopus 로고    scopus 로고
    • Modeling hydraulic and thermal electricity production based on genetic algorithm-time series (gats)
    • Ceylan H., Ozturk H.K. Modeling hydraulic and thermal electricity production based on genetic algorithm-time series (gats). Int J Green Energy 2004, 1:393-406.
    • (2004) Int J Green Energy , vol.1 , pp. 393-406
    • Ceylan, H.1    Ozturk, H.K.2
  • 41
    • 80053171957 scopus 로고    scopus 로고
    • Anovel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey
    • Kiran M.S., Ozceylan E., Gunduz M., Paksoy T. Anovel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey. Energy Convers Manag 2012, 53:75-83.
    • (2012) Energy Convers Manag , vol.53 , pp. 75-83
    • Kiran, M.S.1    Ozceylan, E.2    Gunduz, M.3    Paksoy, T.4
  • 42
    • 84886726325 scopus 로고    scopus 로고
    • Arecombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems
    • Kiran M.S., Gunduz M. Arecombination-based hybridization of particle swarm optimization and artificial bee colony algorithm for continuous optimization problems. Appl Soft Comput 2013, 13:2188-2203.
    • (2013) Appl Soft Comput , vol.13 , pp. 2188-2203
    • Kiran, M.S.1    Gunduz, M.2
  • 44
    • 84866176791 scopus 로고    scopus 로고
    • Use of artificial bee colony (abc) algorithm in artificial neural network synthesis
    • Kumbhar P.Y., Krishnan P.S. Use of artificial bee colony (abc) algorithm in artificial neural network synthesis. Int J Adv Eng Sci Technol 2011, 11:162-171.
    • (2011) Int J Adv Eng Sci Technol , vol.11 , pp. 162-171
    • Kumbhar, P.Y.1    Krishnan, P.S.2
  • 45
    • 84893724585 scopus 로고    scopus 로고
    • Training a functional link neural network using an artificial bee colony for solving a classification problems
    • Hassim Y.M.M., Ghazali R. Training a functional link neural network using an artificial bee colony for solving a classification problems. JComput 2012, 4:110-115.
    • (2012) JComput , vol.4 , pp. 110-115
    • Hassim, Y.M.M.1    Ghazali, R.2
  • 46
    • 84857685424 scopus 로고    scopus 로고
    • Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm
    • Kisi O., Ozkan C., Akay B. Modeling discharge-sediment relationship using neural networks with artificial bee colony algorithm. JHydrol 2012, 428-429:94-103.
    • (2012) JHydrol , pp. 94-103
    • Kisi, O.1    Ozkan, C.2    Akay, B.3
  • 47
    • 70349647885 scopus 로고    scopus 로고
    • Acomparison of rbf neural network training algorithms for inertial sensor based terrain classification
    • Kurban T., Besdok E. Acomparison of rbf neural network training algorithms for inertial sensor based terrain classification. Sensors 2009, 9:6312-6329.
    • (2009) Sensors , vol.9 , pp. 6312-6329
    • Kurban, T.1    Besdok, E.2
  • 48
    • 80053945047 scopus 로고    scopus 로고
    • Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration
    • Ozkan C., Kisi O., Akay B. Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration. Irrigat Sci 2011, 29:431-441.
    • (2011) Irrigat Sci , vol.29 , pp. 431-441
    • Ozkan, C.1    Kisi, O.2    Akay, B.3
  • 49
    • 84881356787 scopus 로고    scopus 로고
    • Prediction of electricity energy consumption of turkey via artificial bee colony: a case study
    • Gurbuz F., Ozturk C., Pardalos P. Prediction of electricity energy consumption of turkey via artificial bee colony: a case study. Energy Syst 2013, 4:289-300.
    • (2013) Energy Syst , vol.4 , pp. 289-300
    • Gurbuz, F.1    Ozturk, C.2    Pardalos, P.3
  • 50
    • 84867888973 scopus 로고    scopus 로고
    • Swarm intelligence approaches to estimate electricity energy demand in Turkey
    • Kiran M.S., Ozceylan E., Gunduz M., Paksoy T. Swarm intelligence approaches to estimate electricity energy demand in Turkey. Knowledge-Based Syst 2012, 36:93-103.
    • (2012) Knowledge-Based Syst , vol.36 , pp. 93-103
    • Kiran, M.S.1    Ozceylan, E.2    Gunduz, M.3    Paksoy, T.4
  • 52
    • 84869030634 scopus 로고    scopus 로고
    • Artificial bees colony optimized neural network model for ecg signals classification
    • Saadi S., Bettayeb M., Guessoum A., Abdelhafidi M.K. Artificial bees colony optimized neural network model for ecg signals classification. Neural Inf Process 2012, 7666:339-346.
    • (2012) Neural Inf Process , vol.7666 , pp. 339-346
    • Saadi, S.1    Bettayeb, M.2    Guessoum, A.3    Abdelhafidi, M.K.4
  • 53
    • 80054749657 scopus 로고    scopus 로고
    • Using an artificial neural network to model seasonal changes in beach profiles
    • Hashemi M.R., Ghadampour Z., Neill S.P. Using an artificial neural network to model seasonal changes in beach profiles. Ocean Eng 2010, 37:1345-1356.
    • (2010) Ocean Eng , vol.37 , pp. 1345-1356
    • Hashemi, M.R.1    Ghadampour, Z.2    Neill, S.P.3
  • 54
    • 0347662492 scopus 로고    scopus 로고
    • Amodelling methodology for assessing the impact of climate variability and climatic change on hydroelectric generation
    • Munoz J.R., Sailor D.J. Amodelling methodology for assessing the impact of climate variability and climatic change on hydroelectric generation. Energy Convers Manag 1998, 39:1459-1469.
    • (1998) Energy Convers Manag , vol.39 , pp. 1459-1469
    • Munoz, J.R.1    Sailor, D.J.2
  • 55
    • 39749091141 scopus 로고    scopus 로고
    • Modeling and forecasting energy consumption in China: implications for Chinese energy demand and imports in 2020
    • Adams F.G., Shachmurove Y. Modeling and forecasting energy consumption in China: implications for Chinese energy demand and imports in 2020. Energy Econ 2008, 30:1263-1278.
    • (2008) Energy Econ , vol.30 , pp. 1263-1278
    • Adams, F.G.1    Shachmurove, Y.2
  • 56
    • 84900639299 scopus 로고    scopus 로고
    • Prediction of suspended sediment concentration from water quality variables
    • Bayram A., Kankal M., Tayfur G., Onsoy H. Prediction of suspended sediment concentration from water quality variables. Neural Comput Appl. 2014, 24:1079-1087.
    • (2014) Neural Comput Appl. , vol.24 , pp. 1079-1087
    • Bayram, A.1    Kankal, M.2    Tayfur, G.3    Onsoy, H.4
  • 57
    • 79960051685 scopus 로고    scopus 로고
    • Prediction of rock fragmentation due to blasting using artificial neural network
    • Bahrami A., Monjezi M., Goshtasbi K., Ghazvinian A. Prediction of rock fragmentation due to blasting using artificial neural network. Eng Comput 2011, 27:177-181.
    • (2011) Eng Comput , vol.27 , pp. 177-181
    • Bahrami, A.1    Monjezi, M.2    Goshtasbi, K.3    Ghazvinian, A.4
  • 58
    • 84901482090 scopus 로고    scopus 로고
    • Energy Market Regulatory Authority, Ankara, Available from:, [accessed 07.05.13]
    • Turkish energy market: an investor's guide 2012 2012, Energy Market Regulatory Authority, Ankara, Available from:, [accessed 07.05.13]. http://www.epdk.gov.tr/documents/strateji/rapor_yayin/yatirimciel_kitabi/Sgb_Rapor_Yayin_Yatirimciel_Kitabi_Eng_2012_Mb3JG91tFh1B.pdf.
    • (2012) Turkish energy market: an investor's guide 2012
  • 59
    • 84878849678 scopus 로고    scopus 로고
    • Hydropower in Turkey: analysis in the view of vision 2023
    • Melikoglu M. Hydropower in Turkey: analysis in the view of vision 2023. Renew Sustain Energy Rev 2013, 25:503-510.
    • (2013) Renew Sustain Energy Rev , vol.25 , pp. 503-510
    • Melikoglu, M.1
  • 60
    • 85019525635 scopus 로고    scopus 로고
    • Turkish Statistical Institute (TURKSTAT). population and demography, population statistics. Available from: [accessed 06.06.13].
    • Turkish Statistical Institute (TURKSTAT). population and demography, population statistics. Available from: [accessed 06.06.13]. http://www.turkstat.gov.tr/UstMenu.do?metod=temelist.
  • 61
    • 84901483429 scopus 로고    scopus 로고
    • Ministry of Energy and Natural Resources (MENR). Energy statistics. Available from: [accessed 08.06.13].
    • Ministry of Energy and Natural Resources (MENR). Energy statistics. Available from: [accessed 08.06.13]. http://www.enerji.gov.tr/index.php?dil=tr%26sf=webpages%26b=y_istatistik%26bn=244%26hn=244%26id=398.
  • 62
    • 84902258045 scopus 로고    scopus 로고
    • Turkish State Meteorological Service Ankara, Turkey, See also:, [in Turkish] [accessed 08.06.13]
    • Turkish State Meteorological Service Climate data assessment report of the year 2010 2011, Ankara, Turkey, See also:, [in Turkish] [accessed 08.06.13]. http://www.mgm.gov.tr/FILES/iklim/2010-yili-iklim-degerlendirmesi.pdf.
    • (2011) Climate data assessment report of the year 2010
  • 63
    • 84901506433 scopus 로고    scopus 로고
    • Turkish Electricity Transmission Company (TEIAS). Monthly distribution of Turkey's gross electricity generation by the imports-exports and gross demand. Available from: [accessed 08.05.13].
    • Turkish Electricity Transmission Company (TEIAS). Monthly distribution of Turkey's gross electricity generation by the imports-exports and gross demand. Available from: [accessed 08.05.13]. http://www.teias.gov.tr/T%C3%BCrkiyeElektrik%C4%B0statistikleri/istatistik2011/istatistik%202011.htm.
  • 65
  • 66
    • 37249084064 scopus 로고    scopus 로고
    • Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems
    • Karaboga D., Basturk B. Artificial bee colony (abc) optimization algorithm for solving constrained optimization problems. Found Fuzzy Log Soft Comput 2007, 4529:789-798.
    • (2007) Found Fuzzy Log Soft Comput , vol.4529 , pp. 789-798
    • Karaboga, D.1    Basturk, B.2
  • 68
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 69
    • 77955274514 scopus 로고    scopus 로고
    • The effect of daylight saving time options on electricity consumption of Turkey
    • Karasu S. The effect of daylight saving time options on electricity consumption of Turkey. Energy 2010, 35:3773-3782.
    • (2010) Energy , vol.35 , pp. 3773-3782
    • Karasu, S.1
  • 70
    • 84857648598 scopus 로고    scopus 로고
    • Artificial bee colony algorithm-neural networks for s-system models of biochemical networks approximation
    • Yeh W.C., Hsieh T.J. Artificial bee colony algorithm-neural networks for s-system models of biochemical networks approximation. Neural Comput Appl 2012, 21:365-375.
    • (2012) Neural Comput Appl , vol.21 , pp. 365-375
    • Yeh, W.C.1    Hsieh, T.J.2
  • 71
    • 84878828477 scopus 로고    scopus 로고
    • TEIAS (Turkish Electricity Transmission Company) See also:, [in Turkish] [accessed 06.07.13]
    • TEIAS (Turkish Electricity Transmission Company) Turkey's electric energy 10 year production capacity projection 2012-2021, See also:, [in Turkish] [accessed 06.07.13]. http://www.epdk.gov.tr/documents/elektrik/rapor_yayin/Elk_Yayin_Uretim_Kapasite_Projeksiyonu_2012_2021.pdf.
    • (2012) Turkey's electric energy 10 year production capacity projection
  • 72
    • 84901480209 scopus 로고    scopus 로고
    • TEIAS (Turkish Electricity Transmission Company) See also:, [in Turkish], [accessed 12.01.14]
    • TEIAS (Turkish Electricity Transmission Company) Turkey's electric energy 10 year production capacity projection 2003-2012, See also:, [in Turkish], [accessed 12.01.14]. http://www.teias.gov.tr/KAPASITE%20PROJEKSIYONU%202003.pdf.
    • (2003) Turkey's electric energy 10 year production capacity projection


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.