메뉴 건너뛰기




Volumn 15, Issue 1, 2014, Pages

A formal concept analysis approach to consensus clustering of multi-experiment expression data

Author keywords

Consensus clustering; Formal concept analysis; Integration analysis; Multi experiment expression data; Particle swarm optimization

Indexed keywords

BIOINFORMATICS; CLUSTER ANALYSIS; DATA INTEGRATION; EXPERIMENTS; FORMAL CONCEPT ANALYSIS; GENE EXPRESSION; INFORMATION ANALYSIS; MATRIX ALGEBRA; PARTICLE SWARM OPTIMIZATION (PSO);

EID: 84901486490     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-15-151     Document Type: Article
Times cited : (20)

References (40)
  • 4
    • 27544449357 scopus 로고    scopus 로고
    • Fusing microarray experiments with multivariate regression
    • Gilks WR, Tom BDM, Brazma A. Fusing microarray experiments with multivariate regression. Bioinformatics 2005, 21(suppl 2):137-143.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL 2 , pp. 137-143
    • Gilks, W.R.1    Tom, B.D.M.2    Brazma, A.3
  • 5
    • 4944232237 scopus 로고    scopus 로고
    • Combining multiple microarray studies and modeling interstudy variation
    • Choi JK, Yu U, Kim S, Yoo OJ. Combining multiple microarray studies and modeling interstudy variation. Bioinformatics 2003, 19(suppl 1):84-90.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL 1 , pp. 84-90
    • Choi, J.K.1    Yu, U.2    Kim, S.3    Yoo, O.J.4
  • 7
    • 41149104381 scopus 로고    scopus 로고
    • Cross-study validation and combined analysis of gene expression microarray data
    • Garrett-Mayer E, Parmigiani G, Zhong X, Cope L, Gabrielson E. Cross-study validation and combined analysis of gene expression microarray data. Biostatistics 2008, 9(2):333-354.
    • (2008) Biostatistics , vol.9 , Issue.2 , pp. 333-354
    • Garrett-Mayer, E.1    Parmigiani, G.2    Zhong, X.3    Cope, L.4    Gabrielson, E.5
  • 8
    • 34248160315 scopus 로고    scopus 로고
    • Integrating microarray data by consensus clustering
    • Filkov V, Skiena S. Integrating microarray data by consensus clustering. Int J Artif Intell Tools 2004, 13(4):863-880.
    • (2004) Int J Artif Intell Tools , vol.13 , Issue.4 , pp. 863-880
    • Filkov, V.1    Skiena, S.2
  • 9
    • 84949523513 scopus 로고    scopus 로고
    • Collective, hierarchical clustering from distributed, heterogeneous data
    • Johnson E, Kargupta H. Collective, hierarchical clustering from distributed, heterogeneous data. Large-Scale Parallel KDD Syst 1999, 1759:221-244.
    • (1999) Large-Scale Parallel KDD Syst , vol.1759 , pp. 221-244
    • Johnson, E.1    Kargupta, H.2
  • 10
    • 30144442247 scopus 로고    scopus 로고
    • Clustering ensembles: models of consensus and weak partitions
    • Topchy A, Jain AK, Punch W. Clustering ensembles: models of consensus and weak partitions. IEEE Trans Pattern Anal Mach Intell 2005, 27(12):1866-1881.
    • (2005) IEEE Trans Pattern Anal Mach Intell , vol.27 , Issue.12 , pp. 1866-1881
    • Topchy, A.1    Jain, A.K.2    Punch, W.3
  • 11
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining multiple partitions
    • Strehl A, Ghosh J. Cluster ensembles-a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 2003, 3:583-617.
    • (2003) J Mach Learn Res , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 12
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the em algorithm. J Roy Stat Soc B 1977, 39(1):1-38.
    • (1977) J Roy Stat Soc B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 13
    • 80052694838 scopus 로고    scopus 로고
    • Clustering of multiple microarray experiments using information integration
    • Kostadinova E, Boeva V, Lavesson N. Clustering of multiple microarray experiments using information integration. Inf Technol Bio-and Med Inform 2011, 6865:123-137.
    • (2011) Inf Technol Bio-and Med Inform , vol.6865 , pp. 123-137
    • Kostadinova, E.1    Boeva, V.2    Lavesson, N.3
  • 15
    • 84865585901 scopus 로고    scopus 로고
    • An integrative clustering approach combining particle swarm optimization and formal concept analysis
    • Vienna, Austria: Springer Berlin Heidelberg
    • Hristoskova A, Boeva V, Tsiporkova E. An integrative clustering approach combining particle swarm optimization and formal concept analysis. Proceedings of Information Technology in Bio-and Medical Informatics 2012, 84-98. Vienna, Austria: Springer Berlin Heidelberg.
    • (2012) Proceedings of Information Technology in Bio-and Medical Informatics , pp. 84-98
    • Hristoskova, A.1    Boeva, V.2    Tsiporkova, E.3
  • 17
    • 84985857701 scopus 로고
    • Fitting groups in data: an introduction to cluster analysis
    • Kaufman L, Rousseeuw PJ. Fitting groups in data: an introduction to cluster analysis. J Am Stat Ass 1991, 86(415):830-832.
    • (1991) J Am Stat Ass , vol.86 , Issue.415 , pp. 830-832
    • Kaufman, L.1    Rousseeuw, P.J.2
  • 24
    • 84862791682 scopus 로고    scopus 로고
    • Integration of particle swarm optimization and genetic algorithm for dynamic clustering
    • Kuo RJ, Syu YJ, Chen Z-Y, Tien FC. Integration of particle swarm optimization and genetic algorithm for dynamic clustering. Inform Sci 2012, 195:124-140.
    • (2012) Inform Sci , vol.195 , pp. 124-140
    • Kuo, R.J.1    Syu, Y.J.2    Chen, Z.-Y.3    Tien, F.C.4
  • 26
  • 27
    • 33645319789 scopus 로고    scopus 로고
    • Constraint-based concept mining and its application to microarray data analysis
    • Besson J, Robardet C, Boulicaut JF, Rome S. Constraint-based concept mining and its application to microarray data analysis. Intell Data Anal 2005, 9(1):59-82.
    • (2005) Intell Data Anal , vol.9 , Issue.1 , pp. 59-82
    • Besson, J.1    Robardet, C.2    Boulicaut, J.F.3    Rome, S.4
  • 28
    • 44049098618 scopus 로고    scopus 로고
    • Using formal concept analysis for microarray data comparison
    • 10.1142/S021972000800328X, 18324746
    • Choi V, Huang Y, Lam V, Potter D, Laubenbacher R, Duca K. Using formal concept analysis for microarray data comparison. J Bioinform Comput Biol 2008, 6(1):65. 10.1142/S021972000800328X, 18324746.
    • (2008) J Bioinform Comput Biol , vol.6 , Issue.1 , pp. 65
    • Choi, V.1    Huang, Y.2    Lam, V.3    Potter, D.4    Laubenbacher, R.5    Duca, K.6
  • 29
    • 44049088054 scopus 로고    scopus 로고
    • A combinatorial approach to scientific exploration of gene expression data: an integrative method using formal concept analysis for the comparative analysis of microarray data
    • Potter DP. A combinatorial approach to scientific exploration of gene expression data: an integrative method using formal concept analysis for the comparative analysis of microarray data. PhD thesis. Citeseer; 2005
    • (2005) PhD thesis. Citeseer;
    • Potter, D.P.1
  • 31
    • 79952191194 scopus 로고    scopus 로고
    • Mining gene expression data with pattern structures in formal concept analysis
    • Kaytoue M, Kuznetsov S, Napoli A, Duplessis S. Mining gene expression data with pattern structures in formal concept analysis. Inf Sci 2011, 181(10):1989-2001.
    • (2011) Inf Sci , vol.181 , Issue.10 , pp. 1989-2001
    • Kaytoue, M.1    Kuznetsov, S.2    Napoli, A.3    Duplessis, S.4
  • 34
    • 35348851943 scopus 로고    scopus 로고
    • Two-pass imputation algorithm for missing value estimation in gene expression time series
    • 10.1142/S0219720007003053, 17933008
    • Tsiporkova E, Boeva V. Two-pass imputation algorithm for missing value estimation in gene expression time series. J Bioinform Comput Biol 2007, 5(5):1005-1022. 10.1142/S0219720007003053, 17933008.
    • (2007) J Bioinform Comput Biol , vol.5 , Issue.5 , pp. 1005-1022
    • Tsiporkova, E.1    Boeva, V.2
  • 35
    • 77957734757 scopus 로고    scopus 로고
    • A multi-purpose time series data standardization method
    • Boeva V, Tsiporkova E. A multi-purpose time series data standardization method. Intell Syst Theory Pract 2010, 299:445-460.
    • (2010) Intell Syst Theory Pract , vol.299 , pp. 445-460
    • Boeva, V.1    Tsiporkova, E.2
  • 36
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • 10.1093/bioinformatics/bti517, 15914541
    • Handl J, Knowles J, Kell DB. Computational cluster validation in post-genomic data analysis. Bioinformatics 2005, 21(15):3201-3212. 10.1093/bioinformatics/bti517, 15914541.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 37
    • 0023453329 scopus 로고
    • Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math 1987, 20:53-65.
    • (1987) J Comput Appl Math , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 38
    • 24044440971 scopus 로고    scopus 로고
    • Bingo: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks
    • 10.1093/bioinformatics/bti551, 15972284
    • Maere S, Heymans K, Kuiper M. Bingo: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 2005, 21(16):3448-3449. 10.1093/bioinformatics/bti551, 15972284.
    • (2005) Bioinformatics , vol.21 , Issue.16 , pp. 3448-3449
    • Maere, S.1    Heymans, K.2    Kuiper, M.3
  • 39
    • 11244260106 scopus 로고    scopus 로고
    • Weka: data mining software in Java
    • Weka: data mining software in Java. [http://www.cs.waikato.ac.nz/ml/weka/].
  • 40
    • 84901486928 scopus 로고    scopus 로고
    • Galicia: Galois lattice interactive constructor
    • Galicia: Galois lattice interactive constructor. [http://www.iro.umontreal.ca/galicia/features.html].


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.