메뉴 건너뛰기




Volumn 232-234, Issue , 2014, Pages 148-163

Spatial prediction of soil great groups by boosted regression trees using a limited point dataset in an arid region, southeastern Iran

Author keywords

Boosted regression tree; Limited dataset; Soil diagnostic horizons; Soil great groups

Indexed keywords

ARID REGIONS; DECISION TREES; FORECASTING; LANDFORMS; PROBABILITY DISTRIBUTIONS; REGRESSION ANALYSIS; SOILS; REMOTE SENSING;

EID: 84901478378     PISSN: 00167061     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.geoderma.2014.04.029     Document Type: Article
Times cited : (76)

References (48)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: bagging, boosting, and variants
    • Bauer E., Kohavi R. An empirical comparison of voting classification algorithms: bagging, boosting, and variants. Mach. Learn. 1999, 36:105-142.
    • (1999) Mach. Learn. , vol.36 , pp. 105-142
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 68249112096 scopus 로고    scopus 로고
    • Quantifying the aspect effect: an application of solar radiation modeling for soil survey
    • Beaudette D.E., O'Geen A.T. Quantifying the aspect effect: an application of solar radiation modeling for soil survey. Soil Sci. Soc. Am. J. 2009, 73:1345-1352.
    • (2009) Soil Sci. Soc. Am. J. , vol.73 , pp. 1345-1352
    • Beaudette, D.E.1    O'Geen, A.T.2
  • 3
    • 76449099884 scopus 로고    scopus 로고
    • Multi-scale digital terrain analysis and feature selection for digital soil mapping
    • Behrens T., Zhu A.X., Schmidt K., Scholten T. Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma 2010, 155:175-185.
    • (2010) Geoderma , vol.155 , pp. 175-185
    • Behrens, T.1    Zhu, A.X.2    Schmidt, K.3    Scholten, T.4
  • 4
    • 33646251126 scopus 로고    scopus 로고
    • Global soil characterization with VNIR diffuse reflectance spectroscopy
    • Brown D.J., Shepherd K.D., Walsh M.G., Mays M.D., Reinsch T.G. Global soil characterization with VNIR diffuse reflectance spectroscopy. Geoderma 2006, 132:273-290.
    • (2006) Geoderma , vol.132 , pp. 273-290
    • Brown, D.J.1    Shepherd, K.D.2    Walsh, M.G.3    Mays, M.D.4    Reinsch, T.G.5
  • 5
    • 0042361819 scopus 로고    scopus 로고
    • Soil-geomorphology relations in gypsiferous materials of the Tabernas Desert (Almería, SE Spain)
    • Cantón Y., Solé-Benet A., Lázaro R. Soil-geomorphology relations in gypsiferous materials of the Tabernas Desert (Almería, SE Spain). Geoderma 2003, 115:193-222.
    • (2003) Geoderma , vol.115 , pp. 193-222
    • Cantón, Y.1    Solé-Benet, A.2    Lázaro, R.3
  • 6
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37(1):35-46.
    • (1991) Remote Sens. Environ. , vol.37 , Issue.1 , pp. 35-46
    • Congalton, R.G.1
  • 7
    • 34247115449 scopus 로고    scopus 로고
    • Boosted trees for ecological modeling and prediction
    • De'ath G. Boosted trees for ecological modeling and prediction. Ecology 2007, 88(1):243-251.
    • (2007) Ecology , vol.88 , Issue.1 , pp. 243-251
    • De'ath, G.1
  • 8
    • 60049098347 scopus 로고    scopus 로고
    • Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: examples from Vestfold County, Norway
    • Debella-Gilo M., Etzelmuller B. Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: examples from Vestfold County, Norway. Catena 2009, 77:8-18.
    • (2009) Catena , vol.77 , pp. 8-18
    • Debella-Gilo, M.1    Etzelmuller, B.2
  • 9
    • 33646143005 scopus 로고    scopus 로고
    • Genetic algorithms for optimisation of predictive ecosystems models based on decision trees and neural networks
    • D'heygere T., Goethals P., De Pauw N. Genetic algorithms for optimisation of predictive ecosystems models based on decision trees and neural networks. Ecol. Model. 2006, 195:20-29.
    • (2006) Ecol. Model. , vol.195 , pp. 20-29
    • D'heygere, T.1    Goethals, P.2    De Pauw, N.3
  • 11
    • 44849118698 scopus 로고    scopus 로고
    • A working guide to boosted regression trees
    • Elith J., Leathwick J.R., Hastie T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77:802-813.
    • (2008) J. Anim. Ecol. , vol.77 , pp. 802-813
    • Elith, J.1    Leathwick, J.R.2    Hastie, T.3
  • 13
    • 47949084001 scopus 로고    scopus 로고
    • Mapping the possible occurrence of archaeological sites by Bayesian inference
    • Finke P.A., Meylemans E., Van de Wauw J. Mapping the possible occurrence of archaeological sites by Bayesian inference. J. Archaeol. Sci. 2008, 35:2786-2796.
    • (2008) J. Archaeol. Sci. , vol.35 , pp. 2786-2796
    • Finke, P.A.1    Meylemans, E.2    Van de Wauw, J.3
  • 14
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • Foody G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80:185-201.
    • (2002) Remote Sens. Environ. , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 15
    • 48149105984 scopus 로고    scopus 로고
    • A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa
    • Freeman E.A., Moisen G.G. A comparison of the performance of threshold criteria for binary classification in terms of predicted prevalence and kappa. Ecol. Model. 2008, 217:48-58.
    • (2008) Ecol. Model. , vol.217 , pp. 48-58
    • Freeman, E.A.1    Moisen, G.G.2
  • 16
    • 0003743417 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Department of Statistics, Stanford University
    • Freidman J.H. Stochastic gradient boosting. Technical Report 1999, Department of Statistics, Stanford University.
    • (1999) Technical Report
    • Freidman, J.H.1
  • 17
    • 77958454421 scopus 로고    scopus 로고
    • Greedy function approximation: a gradient boosting machine
    • Friedman J.H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 2001, 32(2):407-499.
    • (2001) Ann. Stat. , vol.32 , Issue.2 , pp. 407-499
    • Friedman, J.H.1
  • 18
    • 0038702163 scopus 로고    scopus 로고
    • Multiple additive regression trees with application in epidemilogy
    • Friedman J.H., Meulman J.J. Multiple additive regression trees with application in epidemilogy. Stat. Med. 2003, 22:1365-1381.
    • (2003) Stat. Med. , vol.22 , pp. 1365-1381
    • Friedman, J.H.1    Meulman, J.J.2
  • 19
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J.H., Hastie T., Tibshirani R. Additive logistic regression: a statistical view of boosting. Ann. Stat. 2000, 28(2):337-407.
    • (2000) Ann. Stat. , vol.28 , Issue.2 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibshirani, R.3
  • 20
    • 0038623468 scopus 로고    scopus 로고
    • A multiresolution index of valley bottom flatness for mapping depositional areas
    • Gallant J.C., Dowling T.I. A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resour. Res. 2003, 39(1):1347.
    • (2003) Water Resour. Res. , vol.39 , Issue.1 , pp. 1347
    • Gallant, J.C.1    Dowling, T.I.2
  • 21
    • 33745929335 scopus 로고    scopus 로고
    • Digital soil mapping using multiple logistic regression on terrain parameters in Southern Brazil
    • Giassen E., Clarke R.T., Junior A.V.I., Merten G.H., Tornquist C.G. Digital soil mapping using multiple logistic regression on terrain parameters in Southern Brazil. Sci. Agric. 2006, 63:262-268.
    • (2006) Sci. Agric. , vol.63 , pp. 262-268
    • Giassen, E.1    Clarke, R.T.2    Junior, A.V.I.3    Merten, G.H.4    Tornquist, C.G.5
  • 23
    • 38049042366 scopus 로고    scopus 로고
    • Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context
    • Grinand C., Arrouays D., Laroche B., Martin M.P. Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context. Geoderma 2008, 143:180-190.
    • (2008) Geoderma , vol.143 , pp. 180-190
    • Grinand, C.1    Arrouays, D.2    Laroche, B.3    Martin, M.P.4
  • 25
    • 34447527460 scopus 로고    scopus 로고
    • Methods to interpolate soil categorical variables from profile observations: lessons from Iran
    • Hengl T., Toomanian N., Reuter H., Malakouti M.J. Methods to interpolate soil categorical variables from profile observations: lessons from Iran. Geoderma 2007, 140:417-427.
    • (2007) Geoderma , vol.140 , pp. 417-427
    • Hengl, T.1    Toomanian, N.2    Reuter, H.3    Malakouti, M.J.4
  • 26
    • 84858442470 scopus 로고    scopus 로고
    • Spatial prediction of USDA-soil great groups in arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types
    • Jafari A., Finke P.A., Van De Wauw J., Ayoubi S., Khademi H. Spatial prediction of USDA-soil great groups in arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. Eur. J. Soil Sci. 2012, 63(2):284-298.
    • (2012) Eur. J. Soil Sci. , vol.63 , Issue.2 , pp. 284-298
    • Jafari, A.1    Finke, P.A.2    Van De Wauw, J.3    Ayoubi, S.4    Khademi, H.5
  • 27
  • 28
    • 67349185839 scopus 로고    scopus 로고
    • Updating the 1:50000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. Geoderma
    • Kempen, B., Brus, D.J., Heuvlink, G.B.M., Stoorvogel, J.J., 2009. Updating the 1:50000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. Geoderma 151, 311-326.
    • (2009) , vol.151 , pp. 311-326
    • Kempen, B.1    Brus, D.J.2    Heuvlink, G.B.M.3    Stoorvogel, J.J.4
  • 30
    • 1842431416 scopus 로고    scopus 로고
    • Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis
    • Lawrence R., Bunn A., Powell S., Zambon M. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sens. Environ. 2004, 90:331-336.
    • (2004) Remote Sens. Environ. , vol.90 , pp. 331-336
    • Lawrence, R.1    Bunn, A.2    Powell, S.3    Zambon, M.4
  • 31
    • 17444380775 scopus 로고    scopus 로고
    • Evaluation of current statistical approaches for predictive geomorphological mapping
    • Luoto M., Hjort J. Evaluation of current statistical approaches for predictive geomorphological mapping. Geomorphology 2005, 67:299-315.
    • (2005) Geomorphology , vol.67 , pp. 299-315
    • Luoto, M.1    Hjort, J.2
  • 33
    • 84901387481 scopus 로고    scopus 로고
    • Ministry of Economy Trade and Industry of Japan (METI) and the National Aeronautics and Space Administration (NASA)
    • NASA Official
    • Ministry of Economy Trade and Industry of Japan (METI) and the National Aeronautics and Space Administration (NASA). Aster Global Digital Elevation Model (Aster GDEM) 2009, NASA Official, (http://www.gdem.aster.ersdac.or.jp).
    • (2009) Aster Global Digital Elevation Model (Aster GDEM)
  • 34
    • 0036734422 scopus 로고    scopus 로고
    • Spatial data mining for enhanced soil map modelling
    • Moran J.M., Bui E.N. Spatial data mining for enhanced soil map modelling. Int. J. Geogr. Inf. Sci. 2002, 16(6):533-549.
    • (2002) Int. J. Geogr. Inf. Sci. , vol.16 , Issue.6 , pp. 533-549
    • Moran, J.M.1    Bui, E.N.2
  • 37
    • 0343724635 scopus 로고    scopus 로고
    • Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA
    • Pontius R.G., Schneider L.C. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agric. Ecosyst. Environ. 2001, 85:239-248.
    • (2001) Agric. Ecosyst. Environ. , vol.85 , pp. 239-248
    • Pontius, R.G.1    Schneider, L.C.2
  • 38
    • 84884285374 scopus 로고    scopus 로고
    • R Development Core Team
    • R Foundation for Statistical Computing, Vienna, Austria, (URL)
    • R Development Core Team R: A Language and Environment for Statistical Computing 2005, R Foundation for Statistical Computing, Vienna, Austria, (URL http://www.R-project.org).
    • (2005) R: A Language and Environment for Statistical Computing
  • 39
    • 0000855550 scopus 로고
    • Distinguishing vegetation from soil background information
    • Richardson A.J., Wiegand C.L. Distinguishing vegetation from soil background information. Photogramm. Eng. Remote Sens. 1977, 43(12):1541-1552.
    • (1977) Photogramm. Eng. Remote Sens. , vol.43 , Issue.12 , pp. 1541-1552
    • Richardson, A.J.1    Wiegand, C.L.2
  • 41
    • 0002872223 scopus 로고
    • Monitoring vegetation systems in the Great Plains with ERTS
    • Washington, DC, NASA Science and Technology Information Office, S.C. Freden, E.P. Mercanti, M.A. Becker (Eds.) NASA SP-351: Proc. Third Earth Resources Tech. Satellite-Symp
    • Rouse J.W., Hass R.H., Schell J.A., Deering D.W. Monitoring vegetation systems in the Great Plains with ERTS. Technical Presentations Sec. A 1973, vol. 1:309-317. Washington, DC, NASA Science and Technology Information Office. S.C. Freden, E.P. Mercanti, M.A. Becker (Eds.).
    • (1973) Technical Presentations Sec. A , vol.1 , pp. 309-317
    • Rouse, J.W.1    Hass, R.H.2    Schell, J.A.3    Deering, D.W.4
  • 42
    • 77954537216 scopus 로고    scopus 로고
    • Soil Survey Staff, NRCS, USDA, USA
    • Soil Survey Staff Keys to soil taxonomy 2010, NRCS, USDA, USA. Eleventh Edition.
    • (2010) Keys to soil taxonomy
  • 45
    • 84901444175 scopus 로고    scopus 로고
    • U.S.Geology Survey (USGS)
    • (URL)
    • U.S.Geology Survey (USGS) (URL http://glovis.usgs.gov). http://Geology.com/news/2010/free-lansat-images-from-USGS-2.shtml.
  • 46
    • 0030621388 scopus 로고    scopus 로고
    • Using thematic mapper data to identify contrasting soil plains and tillage practices
    • van Deventer A.P., Ward A.D., Gowda P.H., Lyon J.G. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogramm Eng. Remote Sens. 1997, 63(1):87-93.
    • (1997) Photogramm Eng. Remote Sens. , vol.63 , Issue.1 , pp. 87-93
    • van Deventer, A.P.1    Ward, A.D.2    Gowda, P.H.3    Lyon, J.G.4
  • 48
    • 23444460415 scopus 로고    scopus 로고
    • Using sediment budgets to investigate the pathogen flux through catchments
    • Whiteway T.G., Laffan S.W., Wasson R.J. Using sediment budgets to investigate the pathogen flux through catchments. Environ. Manag. 2004, 34:516-527.
    • (2004) Environ. Manag. , vol.34 , pp. 516-527
    • Whiteway, T.G.1    Laffan, S.W.2    Wasson, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.