메뉴 건너뛰기




Volumn 2014, Issue , 2014, Pages

Global optimization ensemble model for classification methods

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CONTROLLED STUDY; DISEASE CLASSIFICATION; GLOBAL OPTIMIZATION ENSEMBLE MODEL FOR CLASSIFICATION METHOD; KERNEL METHOD; LEARNING ALGORITHM; LEARNING DISORDER; MACHINE LEARNING; STRATIFIED SAMPLE; SUPPORT VECTOR MACHINE; ALGORITHM; CLASSIFICATION; DATA MINING; INFORMATION SYSTEM; PROCEDURES; STANDARDS; THEORETICAL MODEL;

EID: 84901281003     PISSN: 23566140     EISSN: 1537744X     Source Type: Journal    
DOI: 10.1155/2014/313164     Document Type: Article
Times cited : (12)

References (25)
  • 4
    • 18244371055 scopus 로고    scopus 로고
    • Geometric proximity graphs for improving nearest neighbor methods in instance-based learning and data mining
    • DOI 10.1142/S0218195905001622, PII S0218195905001622
    • Toussaint G., Geometric proximity graphs for improving nearest neighbor methods in instance-based learning and data mining. International Journal of Computational Geometry and Applications 2005 15 2 101 150 2-s2.0-18244371055 10.1142/S0218195905001622 (Pubitemid 40630512)
    • (2005) International Journal of Computational Geometry and Applications , vol.15 , Issue.2 , pp. 101-150
    • Toussaint, G.1
  • 5
    • 84901257245 scopus 로고    scopus 로고
    • 2008
    • Söder O.,. 2008, http://www.fon.hum.uva.nl/praat/manual/kNN- classifiers-1-What-is-a-kNN-classifier-.html
    • Söder, O.1
  • 7
    • 84901274468 scopus 로고    scopus 로고
    • Department of Statistics, The Pennsylvania State University
    • Li J.,. Department of Statistics, The Pennsylvania State University, http://sites.stat.psu.edu/jiali/course/stat597e/notes2/trees.pdf
    • Li, J.1
  • 10
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • Breiman L., Random forests. Machine Learning 2001 45 1 5 32 2-s2.0-0035478854 10.1023/A:1010933404324 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 15
    • 84901263473 scopus 로고    scopus 로고
    • Rapid miner Tutoiral, October 2009
    • Rapid miner Tutoiral, October 2009, http://www.rapid-i.com/downloads/ tutorial/rapidminer-4. 6-tutorial.pdf
  • 17
    • 67349196796 scopus 로고    scopus 로고
    • PSOLDA: A particle swarm optimization approach for enhancing classification accuracy rate of linear discriminant analysis
    • 2-s2.0-67349196796 10.1016/j.asoc.2009.01.001
    • Lin S.-W., Chen S.-C., PSOLDA: a particle swarm optimization approach for enhancing classification accuracy rate of linear discriminant analysis. Applied Soft Computing Journal 2009 9 3 1008 1015 2-s2.0-67349196796 10.1016/j.asoc.2009.01.001
    • (2009) Applied Soft Computing Journal , vol.9 , Issue.3 , pp. 1008-1015
    • Lin, S.-W.1    Chen, S.-C.2
  • 18
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
    • DOI 10.1016/S0031-3203(02)00121-8, PII S0031320302001218
    • Bryll R., Gutierrez-Osuna R., Quek F., Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recognition 2003 36 6 1291 1302 2-s2.0-0242515926 10.1016/S0031-3203(02)00121-8 (Pubitemid 36225868)
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1291-1302
    • Bryll, R.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 20
    • 0037290189 scopus 로고    scopus 로고
    • Data fusion, ensemble and clustering to improve the classification accuracy for the severity of road traffic accidents in Korea
    • DOI 10.1016/S0925-7535(01)00032-7, PII S0925753501000327
    • Sohn S. Y., Lee S. H., Data fusion, ensemble and clustering to improve the classification accuracy for the severity of road traffic accidents in Korea. Safety Science 2003 41 1 1 14 2-s2.0-0037290189 10.1016/S0925-7535(01)00032-7 (Pubitemid 35299564)
    • (2003) Safety Science , vol.41 , Issue.1 , pp. 1-14
    • Sohn, S.Y.1    Lee, S.H.2
  • 21
    • 80054718586 scopus 로고    scopus 로고
    • Improving classification accuracy by identifying and removing instances that should be misclassified
    • August 2011 2-s2.0-80054718586 10.1109/IJCNN.2011.6033571
    • Smith M. R., Martinez T., Improving classification accuracy by identifying and removing instances that should be misclassified. Proceedings of the International Joint Conference on Neural Network (IJCNN '11) August 2011 2690 2697 2-s2.0-80054718586 10.1109/IJCNN.2011.6033571
    • Proceedings of the International Joint Conference on Neural Network (IJCNN '11) , pp. 2690-2697
    • Smith, M.R.1    Martinez, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.