메뉴 건너뛰기




Volumn 2014, Issue , 2014, Pages

Hybrid soft computing schemes for the prediction of import demand of crude oil in Taiwan

Author keywords

[No Author keywords available]

Indexed keywords

CRUDE OIL; ENERGY RESOURCES; LINEAR REGRESSION; MEAN SQUARE ERROR; NEURAL NETWORKS; SOFT COMPUTING;

EID: 84901037072     PISSN: 1024123X     EISSN: 15635147     Source Type: Journal    
DOI: 10.1155/2014/257947     Document Type: Article
Times cited : (6)

References (70)
  • 1
    • 84901057135 scopus 로고    scopus 로고
    • REN21 Renewables 2011: Global Status Report, 2011
    • REN21 Renewables 2011: Global Status Report, 2011, http://www.ren21.net/ Portals/0/documents/activities/gsr/2011 GSR Press Release-English.pdf
  • 2
    • 84901057136 scopus 로고    scopus 로고
    • REN21, Renewables 2012: Global Status Report, 2012
    • REN21, Renewables 2012: Global Status Report, 2012, http://new.ren21.net/ Portals/0/documents/activities/gsr/GSR2012-low res-FINAL.pdf
  • 3
    • 84901057137 scopus 로고    scopus 로고
    • International Energy Agency (IEA). World Energy Outlook 2004; IEA, Paris, France, 2004
    • International Energy Agency (IEA). World Energy Outlook 2004; IEA, Paris, France, 2004, http://www.worldenergyoutlook.org/media/weowebsite/2008-1994/ WEO2004.pdf
  • 4
    • 84901057138 scopus 로고    scopus 로고
    • International Energy Agency (IEA), World Energy Outlook 2007; IEA, Paris, France, 2007
    • International Energy Agency (IEA), World Energy Outlook 2007; IEA, Paris, France, 2007, http://www.worldenergyoutlook.org/media/weowebsite/2008-1994/weo- 2007.pdf
  • 5
    • 84865772622 scopus 로고    scopus 로고
    • World energy balance outlook and OPEC production capacity: Implications for global oil security
    • 10.3390/en5082626
    • Mirchi A., Hadian S., Madani K., Rouhani O. M., Rouhani A. M., World energy balance outlook and OPEC production capacity: implications for global oil security. Energies 2012 5 2626 2651 10.3390/en5082626
    • (2012) Energies , vol.5 , pp. 2626-2651
    • Mirchi, A.1    Hadian, S.2    Madani, K.3    Rouhani, O.M.4    Rouhani, A.M.5
  • 6
    • 39149132429 scopus 로고    scopus 로고
    • A critical review of IEA's oil demand forecast for China
    • 2-s2.0-39149132429 10.1016/j.enpol.2007.11.025
    • Nel W. P., Cooper C. J., A critical review of IEA's oil demand forecast for China. Energy Policy 2008 36 3 1096 1106 2-s2.0-39149132429 10.1016/j.enpol.2007.11.025
    • (2008) Energy Policy , vol.36 , Issue.3 , pp. 1096-1106
    • Nel, W.P.1    Cooper, C.J.2
  • 7
    • 58149197622 scopus 로고    scopus 로고
    • Import demand of crude oil and economic growth: Evidence from India
    • 2-s2.0-58149197622 10.1016/j.enpol.2008.10.021
    • Ghosh S., Import demand of crude oil and economic growth: evidence from India. Energy Policy 2009 37 2 699 702 2-s2.0-58149197622 10.1016/j.enpol.2008. 10.021
    • (2009) Energy Policy , vol.37 , Issue.2 , pp. 699-702
    • Ghosh, S.1
  • 8
    • 78049447899 scopus 로고    scopus 로고
    • Price and income elasticities of crude oil import demand in South Africa: A cointegration analysis
    • 2-s2.0-78049447899 10.1016/j.enpol.2010.08.044
    • Ziramba E., Price and income elasticities of crude oil import demand in South Africa: a cointegration analysis. Energy Policy 2010 38 12 7844 7849 2-s2.0-78049447899 10.1016/j.enpol.2010.08.044
    • (2010) Energy Policy , vol.38 , Issue.12 , pp. 7844-7849
    • Ziramba, E.1
  • 9
    • 34548724402 scopus 로고    scopus 로고
    • Short-run and long-run elasticities of import demand for crude oil in Turkey
    • DOI 10.1016/j.enpol.2007.07.015, PII S0301421507003151
    • Altinay G., Short-run and long-run elasticities of import demand for crude oil in Turkey. Energy Policy 2007 35 11 5829 5835 2-s2.0-34548724402 10.1016/j.enpol.2007.07.015 (Pubitemid 47424051)
    • (2007) Energy Policy , vol.35 , Issue.11 , pp. 5829-5835
    • Altinay, G.1
  • 10
    • 33750008410 scopus 로고    scopus 로고
    • Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model
    • DOI 10.1016/j.enpol.2005.08.023, PII S0301421505002314
    • Ediger V. Ş., Akar S., Uurlu B., Forecasting production of fossil fuel sources in Turkey using a comparative regression and ARIMA model. Energy Policy 2006 34 18 3836 3846 2-s2.0-33750008410 10.1016/j.enpol.2005.08.023 (Pubitemid 44567239)
    • (2006) Energy Policy , vol.34 , Issue.18 , pp. 3836-3846
    • Ediger, V.S.1    Akar, S.2    Ugurlu, B.3
  • 11
    • 33845254780 scopus 로고    scopus 로고
    • ARIMA forecasting of primary energy demand by fuel in Turkey
    • DOI 10.1016/j.enpol.2006.05.009, PII S0301421506002291
    • Ediger V. Ş., Akar S., ARIMA forecasting of primary energy demand by fuel in Turkey. Energy Policy 2007 35 3 1701 1708 2-s2.0-33845254780 10.1016/j.enpol.2006.05.009 (Pubitemid 44858159)
    • (2007) Energy Policy , vol.35 , Issue.3 , pp. 1701-1708
    • Ediger, V.S.1    Akar, S.2
  • 12
    • 0032181722 scopus 로고    scopus 로고
    • A residential end-use energy consumption model for Canada
    • 2-s2.0-0032181722 10.1002/(SICI)1099-114X(19981025)22:13<1133: AID-ER434>3.0.CO;2-E
    • Farahbakhsh H., Ugursal V. I., Fung A. S., A residential end-use energy consumption model for Canada. International Journal of Energy Research 1998 22 13 1133 1143 2-s2.0-0032181722 10.1002/(SICI)1099-114X(19981025)22: 13<1133::AID-ER434>3.0.CO;2-E
    • (1998) International Journal of Energy Research , vol.22 , Issue.13 , pp. 1133-1143
    • Farahbakhsh, H.1    Ugursal, V.I.2    Fung, A.S.3
  • 13
    • 0000273668 scopus 로고    scopus 로고
    • Short-term Forecasting of industrial electricity consumption in Brazil
    • Sadownik R., Barbosa E. P., Short-term Forecasting of industrial electricity consumption in Brazil. Journal of Forecasting 1999 18 3 215 224 2-s2.0-0000273668 10.1002/(SICI)1099-131X(199905)18:3<215::AID- FOR719>3.0.CO;2-B (Pubitemid 129664177)
    • (1999) Journal of Forecasting , vol.18 , Issue.3 , pp. 215-224
    • Sadownik, R.1    Barbosa, E.P.2
  • 14
    • 0033120014 scopus 로고    scopus 로고
    • Modelling of electrical energy consumption in Delhi
    • DOI 10.1016/S0360-5442(98)00087-5, PII S0360544298000875
    • Ranjan M., Jain V. K., Modelling of electrical energy consumption in Delhi. Energy 1999 24 4 351 361 2-s2.0-0033120014 10.1016/S0360-5442(98)00087-5 (Pubitemid 29291990)
    • (1999) Energy , vol.24 , Issue.4 , pp. 351-361
    • Ranjan, M.1    Jain, V.K.2
  • 15
    • 0031934580 scopus 로고    scopus 로고
    • Climate and residential electricity consumption in Hong Kong
    • DOI 10.1016/S0360-5442(97)00053-4, PII S0360544297000534
    • Yan Y. Y., Climate and residential electricity consumption in Hong Kong. Energy 1998 23 1 17 20 2-s2.0-0031934580 10.1016/S0360-5442(97)00053-4 (Pubitemid 28080253)
    • (1998) Energy , vol.23 , Issue.1 , pp. 17-20
    • Yan, Y.Y.1
  • 16
    • 84871395595 scopus 로고    scopus 로고
    • Modeling pan evaporation for Kuwait by multiple linear regression
    • 574742 10.1100/2012/574742
    • Almedeij J., Modeling pan evaporation for Kuwait by multiple linear regression. The Scientific World Journal 2012 2012 9 574742 10.1100/2012/574742
    • (2012) The Scientific World Journal , vol.2012 , pp. 9
    • Almedeij, J.1
  • 17
    • 33845273062 scopus 로고    scopus 로고
    • Artificial neural network analysis of world green energy use
    • DOI 10.1016/j.enpol.2006.04.015, PII S0301421506001972
    • Ermis K., Midilli A., Dincer I., Rosen M. A., Artificial neural network analysis of world green energy use. Energy Policy 2007 35 3 1731 1743 2-s2.0-33845273062 10.1016/j.enpol.2006.04.015 (Pubitemid 44858147)
    • (2007) Energy Policy , vol.35 , Issue.3 , pp. 1731-1743
    • Ermis, K.1    Midilli, A.2    Dincer, I.3    Rosen, M.A.4
  • 18
    • 69949163587 scopus 로고    scopus 로고
    • Energy demand estimation of South Korea using artificial neural network
    • 2-s2.0-69949163587 10.1016/j.enpol.2009.04.049
    • Geem Z. W., Roper W. E., Energy demand estimation of South Korea using artificial neural network. Energy Policy 2009 37 10 4049 4054 2-s2.0-69949163587 10.1016/j.enpol.2009.04.049
    • (2009) Energy Policy , vol.37 , Issue.10 , pp. 4049-4054
    • Geem, Z.W.1    Roper, W.E.2
  • 19
    • 76649131245 scopus 로고    scopus 로고
    • Greek long-term energy consumption prediction using artificial neural networks
    • 2-s2.0-76649131245 10.1016/j.energy.2009.10.018
    • Ekonomou L., Greek long-term energy consumption prediction using artificial neural networks. Energy 2010 35 2 512 517 2-s2.0-76649131245 10.1016/j.energy.2009.10.018
    • (2010) Energy , vol.35 , Issue.2 , pp. 512-517
    • Ekonomou, L.1
  • 20
    • 33746976184 scopus 로고    scopus 로고
    • Use of artificial neural networks for transport energy demand modeling
    • DOI 10.1016/j.enpol.2005.02.010, PII S0301421505000698
    • Murat Y. S., Ceylan H., Use of artificial neural networks for transport energy demand modeling. Energy Policy 2006 34 17 3165 3172 2-s2.0-33746976184 10.1016/j.enpol.2005.02.010 (Pubitemid 44204045)
    • (2006) Energy Policy , vol.34 , Issue.17 , pp. 3165-3172
    • Murat, Y.S.1    Ceylan, H.2
  • 21
    • 42749089472 scopus 로고    scopus 로고
    • Machine learning based switching model for electricity load forecasting
    • 2-s2.0-42749089472 10.1016/j.enconman.2008.01.008
    • Fan S., Chen L. N., Lee W.-J., Machine learning based switching model for electricity load forecasting. Energy Conversion and Management 2008 49 6 1331 1344 2-s2.0-42749089472 10.1016/j.enconman.2008.01.008
    • (2008) Energy Conversion and Management , vol.49 , Issue.6 , pp. 1331-1344
    • Fan, S.1    Chen, L.N.2    Lee, W.-J.3
  • 22
    • 72649087088 scopus 로고    scopus 로고
    • A trend fixed on firstly and seasonal adjustment model combined with the ε -SVR for short-term forecasting of electricity demand
    • 2-s2.0-72649087088 10.1016/j.enpol.2009.06.046
    • Wang J., Zhu W., Zhang W., Sun D., A trend fixed on firstly and seasonal adjustment model combined with the ε -SVR for short-term forecasting of electricity demand. Energy Policy 2009 37 11 4901 4909 2-s2.0-72649087088 10.1016/j.enpol.2009.06.046
    • (2009) Energy Policy , vol.37 , Issue.11 , pp. 4901-4909
    • Wang, J.1    Zhu, W.2    Zhang, W.3    Sun, D.4
  • 23
    • 34047099220 scopus 로고    scopus 로고
    • Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption
    • DOI 10.1016/j.amc.2006.08.093, PII S0096300306011088
    • Azadeh A., Ghaderi S. F., Tarverdian S., Saberi M., Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption. Applied Mathematics and Computation 2007 186 2 1731 1741 MR2319069 10.1016/j.amc.2006.08.093 ZBL1222.78031 (Pubitemid 46509532)
    • (2007) Applied Mathematics and Computation , vol.186 , Issue.2 , pp. 1731-1741
    • Azadeh, A.1    Ghaderi, S.F.2    Tarverdian, S.3    Saberi, M.4
  • 25
    • 84860280647 scopus 로고    scopus 로고
    • A hybrid neural network and ARIMA model for energy consumption forecasting
    • 2-s2.0-84860280647 10.4304/jcp.7.5.1184-1190
    • Wang X., Meng M., A hybrid neural network and ARIMA model for energy consumption forecasting. Journal of Computers 2012 7 5 1184 1190 2-s2.0-84860280647 10.4304/jcp.7.5.1184-1190
    • (2012) Journal of Computers , vol.7 , Issue.5 , pp. 1184-1190
    • Wang, X.1    Meng, M.2
  • 26
    • 69349100782 scopus 로고    scopus 로고
    • Forecasting energy consumption in Taiwan using hybrid nonlinear models
    • 2-s2.0-69349100782 10.1016/j.energy.2009.04.026
    • Pao H. T., Forecasting energy consumption in Taiwan using hybrid nonlinear models. Energy 2009 34 10 1438 1446 2-s2.0-69349100782 10.1016/j.energy.2009.04.026
    • (2009) Energy , vol.34 , Issue.10 , pp. 1438-1446
    • Pao, H.T.1
  • 27
    • 84855292182 scopus 로고    scopus 로고
    • Energy models for demand forecasting - A review
    • 2-s2.0-84855292182 10.1016/j.rser.2011.08.014
    • Suganthi L., Samuel A. A., Energy models for demand forecasting-a review. Renewable and Sustainable Energy Reviews 2012 16 2 1223 1240 2-s2.0-84855292182 10.1016/j.rser.2011.08.014
    • (2012) Renewable and Sustainable Energy Reviews , vol.16 , Issue.2 , pp. 1223-1240
    • Suganthi, L.1    Samuel, A.A.2
  • 28
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: A new learning scheme of feedforward neural networks
    • 2004 IEEE International Joint Conference on Neural Networks - Proceedings
    • Huang G.-B., Zhu Q.-Y., Siew C.-K., Extreme learning machine: a new learning scheme of feedforward neural networks. Proceedings of the IEEE International Joint Conference on Neural Networks July 2004 Budapest, Hungary 985 990 2-s2.0-10944272650 (Pubitemid 40011594)
    • (2004) IEEE International Conference on Neural Networks - Conference Proceedings , vol.2 , pp. 985-990
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 29
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • DOI 10.1016/j.neucom.2005.12.126, PII S0925231206000385
    • Huang G.-B., Zhu Q.-Y., Siew C.-K., Extreme learning machine: theory and applications. Neurocomputing 2006 70 1-3 489 501 2-s2.0-33745903481 10.1016/j.neucom.2005.12.126 (Pubitemid 44615772)
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 30
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • DOI 10.1109/TNN.2006.875977
    • Huang G.-B., Chen L., Siew C.-K., Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks 2006 17 4 879 892 2-s2.0-33745918399 10.1109/TNN.2006.875977 (Pubitemid 44194149)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 31
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • DOI 10.1016/j.neucom.2007.02.009, PII S0925231207000677
    • Huang G.-B., Chen L., Convex incremental extreme learning machine. Neurocomputing 2007 70 16-18 3056 3062 2-s2.0-34548158996 10.1016/j.neucom.2007. 02.009 (Pubitemid 47308612)
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 32
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • 2-s2.0-56549090053 10.1016/j.neucom.2007.10.008
    • Huang G.-B., Chen L., Enhanced random search based incremental extreme learning machine. Neurocomputing 2008 71 16-18 3460 3468 2-s2.0-56549090053 10.1016/j.neucom.2007.10.008
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 33
    • 56049098499 scopus 로고    scopus 로고
    • Sales forecasting using extreme learning machine with applications in fashion retailing
    • 2-s2.0-56049098499 10.1016/j.dss.2008.07.009
    • Sun Z.-L., Choi T.-M., Au K.-F., Yu Y., Sales forecasting using extreme learning machine with applications in fashion retailing. Decision Support Systems 2008 46 1 411 419 2-s2.0-56049098499 10.1016/j.dss.2008.07.009
    • (2008) Decision Support Systems , vol.46 , Issue.1 , pp. 411-419
    • Sun, Z.-L.1    Choi, T.-M.2    Au, K.-F.3    Yu, Y.4
  • 34
    • 84868667879 scopus 로고    scopus 로고
    • Sales forecasting for computer wholesalers: A comparison of multivariate adaptive regression splines and artificial neural networks
    • 10.1016/j.dss.2012.08.006
    • Lu C. J., Lee T. S., Lian C. M., Sales forecasting for computer wholesalers: a comparison of multivariate adaptive regression splines and artificial neural networks. Decision Support Systems 2012 54 1 584 596 10.1016/j.dss.2012.08.006
    • (2012) Decision Support Systems , vol.54 , Issue.1 , pp. 584-596
    • Lu, C.J.1    Lee, T.S.2    Lian, C.M.3
  • 35
    • 84871847425 scopus 로고    scopus 로고
    • Forecasting computer products sales by integrating ensemble empirical mode decomposition and extreme learning machine
    • 831201 10.1155/2012/831201
    • Lu C. J., Shao Y. E., Forecasting computer products sales by integrating ensemble empirical mode decomposition and extreme learning machine. Mathematical Problems in Engineering 2012 2012 15 831201 10.1155/2012/831201
    • (2012) Mathematical Problems in Engineering , vol.2012 , pp. 15
    • Lu, C.J.1    Shao, Y.E.2
  • 36
    • 84876017830 scopus 로고    scopus 로고
    • An approach based on multi-feature wavelet and ELM algorithm for forecasting outlier occurrence in Chinese stock market
    • Fang Z., Zhao J., Fei F., Wang Q., He X., An approach based on multi-feature wavelet and ELM algorithm for forecasting outlier occurrence in Chinese stock market. Journal of Theoretical and Applied Information Technology 2013 49 1 369 377
    • (2013) Journal of Theoretical and Applied Information Technology , vol.49 , Issue.1 , pp. 369-377
    • Fang, Z.1    Zhao, J.2    Fei, F.3    Wang, Q.4    He, X.5
  • 37
    • 84862779843 scopus 로고    scopus 로고
    • Online sequential extreme learning machine with forgetting mechanism
    • 2-s2.0-84857539196 10.1016/j.neucom.2012.02.003
    • Zhao J., Wang Z., Park D. S., Online sequential extreme learning machine with forgetting mechanism. Neurocomputing 2012 87 79 89 2-s2.0-84857539196 10.1016/j.neucom.2012.02.003
    • (2012) Neurocomputing , vol.87 , pp. 79-89
    • Zhao, J.1    Wang, Z.2    Park, D.S.3
  • 38
    • 84867984549 scopus 로고    scopus 로고
    • Electricity price forecasting with extreme learning machine and bootstrapping
    • 2-s2.0-84859930776 10.1109/TPWRS.2012.2190627
    • Chen X., Dong Z. Y., Meng K., Xu Y., Wong K. P., Ngan H. W., Electricity price forecasting with extreme learning machine and bootstrapping. IEEE Transactions on Power Systems 2012 27 4 2055 2062 2-s2.0-84859930776 10.1109/TPWRS.2012.2190627
    • (2012) IEEE Transactions on Power Systems , vol.27 , Issue.4 , pp. 2055-2062
    • Chen, X.1    Dong, Z.Y.2    Meng, K.3    Xu, Y.4    Wong, K.P.5    Ngan, H.W.6
  • 40
    • 79151477537 scopus 로고    scopus 로고
    • Spline regression based feature extraction for semiconductor process fault detection using support vector machine
    • 2-s2.0-79151477537 10.1016/j.eswa.2010.10.062
    • Park J., Kwon I.-H., Kim S.-S., Baek J.-G., Spline regression based feature extraction for semiconductor process fault detection using support vector machine. Expert Systems with Applications 2011 38 5 5711 5718 2-s2.0-79151477537 10.1016/j.eswa.2010.10.062
    • (2011) Expert Systems with Applications , vol.38 , Issue.5 , pp. 5711-5718
    • Park, J.1    Kwon, I.-H.2    Kim, S.-S.3    Baek, J.-G.4
  • 41
    • 69949122673 scopus 로고    scopus 로고
    • Determining the contributors for a multivariate SPC chart signal using artificial neural networks and support vector machine
    • 2-s2.0-69949122673
    • Shao Y. E., Hsu B.-S., Determining the contributors for a multivariate SPC chart signal using artificial neural networks and support vector machine. International Journal of Innovative Computing, Information and Control 2009 5 12 4899 4906 2-s2.0-69949122673
    • (2009) International Journal of Innovative Computing, Information and Control , vol.5 , Issue.12 , pp. 4899-4906
    • Shao, Y.E.1    Hsu, B.-S.2
  • 42
    • 79955989585 scopus 로고    scopus 로고
    • Mixture control chart patterns recognition using independent component analysis and support vector machine
    • 2-s2.0-79955989585 10.1016/j.neucom.2010.06.036
    • Lu C.-J., Shao Y. E., Li P.-H., Mixture control chart patterns recognition using independent component analysis and support vector machine. Neurocomputing 2011 74 11 1908 1914 2-s2.0-79955989585 10.1016/j.neucom.2010.06. 036
    • (2011) Neurocomputing , vol.74 , Issue.11 , pp. 1908-1914
    • Lu, C.-J.1    Shao, Y.E.2    Li, P.-H.3
  • 43
    • 80052450231 scopus 로고    scopus 로고
    • A fault detection system for an autocorrelated process using SPC/EPC/ANN and SPC/EPC/SVM schemes
    • 2-s2.0-80052450231
    • Shao Y. E., Lu C.-J., Chiu C.-C., A fault detection system for an autocorrelated process using SPC/EPC/ANN AND SPC/EPC/SVM schemes. International Journal of Innovative Computing, Information and Control 2011 7 9 5417 5428 2-s2.0-80052450231
    • (2011) International Journal of Innovative Computing, Information and Control , vol.7 , Issue.9 , pp. 5417-5428
    • Shao, Y.E.1    Lu, C.-J.2    Chiu, C.-C.3
  • 44
    • 84867967027 scopus 로고    scopus 로고
    • A hybrid ICA-SVM approach for determining the fault quality variables in a multivariate process
    • 284910 10.1155/2012/284910 ZBL1264.94066
    • Shao Y. E., Lu C. J., Wang Y. C., A hybrid ICA-SVM approach for determining the fault quality variables in a multivariate process. Mathematical Problems in Engineering 2012 2012 12 284910 10.1155/2012/284910 ZBL1264.94066
    • (2012) Mathematical Problems in Engineering , vol.2012 , pp. 12
    • Shao, Y.E.1    Lu, C.J.2    Wang, Y.C.3
  • 45
    • 58349104545 scopus 로고    scopus 로고
    • Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions
    • 2-s2.0-58349104545 10.1016/j.eswa.2008.07.069
    • Castro-Neto M., Jeong Y.-S., Jeong M.-K., Han L. D., Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Systems with Applications 2009 36 3 6164 6173 2-s2.0-58349104545 10.1016/j.eswa.2008.07.069
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 6164-6173
    • Castro-Neto, M.1    Jeong, Y.-S.2    Jeong, M.-K.3    Han, L.D.4
  • 46
    • 78049295934 scopus 로고    scopus 로고
    • Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting
    • 2-s2.0-78049295934 10.1016/j.ijpe.2010.07.004
    • Lu C.-J., Wang Y.-W., Combining independent component analysis and growing hierarchical self-organizing maps with support vector regression in product demand forecasting. International Journal of Production Economics 2010 128 2 603 613 2-s2.0-78049295934 10.1016/j.ijpe.2010.07.004
    • (2010) International Journal of Production Economics , vol.128 , Issue.2 , pp. 603-613
    • Lu, C.-J.1    Wang, Y.-W.2
  • 47
    • 80054104836 scopus 로고    scopus 로고
    • Correlation-aided support vector regression for forex time series prediction
    • 2-s2.0-80054104836 10.1007/s00521-010-0482-5
    • Pang S., Song L., Kasabov N., Correlation-aided support vector regression for forex time series prediction. Neural Computing and Applications 2011 20 8 1193 1203 2-s2.0-80054104836 10.1007/s00521-010-0482-5
    • (2011) Neural Computing and Applications , vol.20 , Issue.8 , pp. 1193-1203
    • Pang, S.1    Song, L.2    Kasabov, N.3
  • 49
    • 84885911498 scopus 로고    scopus 로고
    • Incorporating feature selection method into support vector regression for stock index forecasting
    • 10.1007/s00521-012-1104-1
    • Dai W., Shao Y. E., Lu C. J., Incorporating feature selection method into support vector regression for stock index forecasting. Neural Computing and Applications 2013 23 6 1551 1561 10.1007/s00521-012-1104-1
    • (2013) Neural Computing and Applications , vol.23 , Issue.6 , pp. 1551-1561
    • Dai, W.1    Shao, Y.E.2    Lu, C.J.3
  • 50
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • 2-s2.0-0032594959 10.1109/72.788640
    • Vapnik V. N., An overview of statistical learning theory. IEEE Transactions on Neural Networks 1999 10 5 988 999 2-s2.0-0032594959 10.1109/72.788640
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 53
    • 48249127045 scopus 로고    scopus 로고
    • Analysis on the robustness of the pressure-based individual identification system based on neural networks
    • 2-s2.0-48249127045
    • Mi L., Takeda F., Analysis on the robustness of the pressure-based individual identification system based on neural networks. International Journal of Innovative Computing, Information and Control 2007 3 1 97 110 2-s2.0-48249127045
    • (2007) International Journal of Innovative Computing, Information and Control , vol.3 , Issue.1 , pp. 97-110
    • Mi, L.1    Takeda, F.2
  • 54
    • 0042733391 scopus 로고    scopus 로고
    • Identification of process disturbance using SPC/EPC and neural networks
    • 2-s2.0-0042733391 10.1023/A:1024657911399
    • Chiu C.-C., Shao Y. E., Lee T.-S., Lee K.-M., Identification of process disturbance using SPC/EPC and neural networks. Journal of Intelligent Manufacturing 2003 14 3-4 379 388 2-s2.0-0042733391 10.1023/A:1024657911399
    • (2003) Journal of Intelligent Manufacturing , vol.14 , Issue.3-4 , pp. 379-388
    • Chiu, C.-C.1    Shao, Y.E.2    Lee, T.-S.3    Lee, K.-M.4
  • 55
    • 38649131505 scopus 로고    scopus 로고
    • Incremental extreme learning machine with fully complex hidden nodes
    • DOI 10.1016/j.neucom.2007.07.025, PII S0925231207002925
    • Huang G.-B., Li M.-B., Chen L., Siew C.-K., Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 2008 71 4-6 576 583 2-s2.0-38649131505 10.1016/j.neucom.2007.07.025 (Pubitemid 351168446)
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 576-583
    • Huang, G.-B.1    Li, M.-B.2    Chen, L.3    Siew, C.-K.4
  • 56
    • 84906948723 scopus 로고    scopus 로고
    • An insight into extreme learning machines: Random neurons, random features and kernels
    • 10.1007/S12559-014-9255-2
    • Huang G. B., An insight into extreme learning machines: random neurons, random features and kernels. Cognitive Computation 2014 10.1007/S12559-014-9255- 2
    • (2014) Cognitive Computation
    • Huang, G.B.1
  • 57
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • DOI 10.1016/S0925-2312(01)00702-0, PII S0925231201007020
    • Zhang P. G., Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 2003 50 159 175 2-s2.0-0037243071 10.1016/S0925-2312(01)00702-0 ZBL1006.68828 (Pubitemid 36124139)
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 58
    • 34548167332 scopus 로고    scopus 로고
    • An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting
    • DOI 10.1016/j.neucom.2007.01.009, PII S0925231207000136
    • Zou H. F., Xia G. P., Yang F. T., Wang H. Y., An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting. Neurocomputing 2007 70 16-18 2913 2923 2-s2.0-34548167332 10.1016/j.neucom.2007.01.009 (Pubitemid 47308610)
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 2913-2923
    • Zou, H.F.1    Xia, G.P.2    Yang, F.T.3    Wang, H.Y.4
  • 59
    • 84897005235 scopus 로고    scopus 로고
    • Body fat percentage prediction using intelligent hybrid approaches
    • 10.1155/2014/383910 383910
    • Shao Y. E., Body fat percentage prediction using intelligent hybrid approaches. The Scientific World Journal 2014 2014 8 10.1155/2014/383910 383910
    • (2014) The Scientific World Journal , vol.2014 , pp. 8
    • Shao, Y.E.1
  • 60
    • 35348858027 scopus 로고    scopus 로고
    • Forecasting Thailand's rice export: Statistical techniques vs artificial neural networks
    • DOI 10.1016/j.cie.2007.06.005, PII S0360835207000952
    • Co H. C., Boosarawongse R., Forecasting Thailand's rice export: Statistical techniques vs. Artificial neural networks. Computers and Industrial Engineering 2007 53 4 610 627 2-s2.0-35348858027 10.1016/j.cie.2007.06.005 (Pubitemid 47588647)
    • (2007) Computers and Industrial Engineering , vol.53 , Issue.4 , pp. 610-627
    • Co, H.C.1    Boosarawongse, R.2
  • 61
    • 60249089206 scopus 로고    scopus 로고
    • A new two-stage hybrid approach of credit risk in banking industry
    • 2-s2.0-60249089206 10.1016/j.eswa.2008.10.015
    • Lin S. L., A new two-stage hybrid approach of credit risk in banking industry. Expert Systems with Applications 2009 36 4 8333 8341 2-s2.0-60249089206 10.1016/j.eswa.2008.10.015
    • (2009) Expert Systems with Applications , vol.36 , Issue.4 , pp. 8333-8341
    • Lin, S.L.1
  • 62
    • 84901057140 scopus 로고    scopus 로고
    • Bureau of Energy
    • Bureau of Energy, http://web3.moeaboe.gov.tw/ECW/populace/content/ SubMenu.aspx?menu-id=141
  • 63
    • 84893163843 scopus 로고    scopus 로고
    • Recognition of concurrent control chart patterns by integrating ICA and SVM
    • 10.12785/amis/080227
    • Lu C. J., Shao Y. E., Li C. C., Recognition of concurrent control chart patterns by integrating ICA and SVM. Applied Mathematics & Information Sciences 2014 8 2 681 689 10.12785/amis/080227
    • (2014) Applied Mathematics & Information Sciences , vol.8 , Issue.2 , pp. 681-689
    • Lu, C.J.1    Shao, Y.E.2    Li, C.C.3
  • 64
    • 84888293910 scopus 로고    scopus 로고
    • Hybrid intelligent modeling schemes for heart disease classification
    • 10.1016/j.asoc.2013.09.020
    • Shao Y. E., Hou C. D., Chiu C. C., Hybrid intelligent modeling schemes for heart disease classification. Applied Soft Computing 2014 14 47 52 10.1016/j.asoc.2013.09.020
    • (2014) Applied Soft Computing , vol.14 , pp. 47-52
    • Shao, Y.E.1    Hou, C.D.2    Chiu, C.C.3
  • 65
    • 84893794764 scopus 로고    scopus 로고
    • Hybrid artificial neural networks modeling for faults identification of a stochastic multivariate process
    • 10.1155/2013/386757 386757
    • Shao Y. E., Hou C. D., Hybrid artificial neural networks modeling for faults identification of a stochastic multivariate process. Abstract and Applied Analysis 2013 2013 10 10.1155/2013/386757 386757
    • (2013) Abstract and Applied Analysis , vol.2013 , pp. 10
    • Shao, Y.E.1    Hou, C.D.2
  • 66
    • 84881666692 scopus 로고    scopus 로고
    • Change point determination for a multivariate process using a two-stage hybrid scheme
    • 2-s2.0-84858119675 10.1016/j.asoc.2012.02.008
    • Shao Y. E., Hou C.-D., Change point determination for a multivariate process using a two-stage hybrid scheme. Applied Soft Computing Journal 2013 13 3 1520 1527 2-s2.0-84858119675 10.1016/j.asoc.2012.02.008
    • (2013) Applied Soft Computing Journal , vol.13 , Issue.3 , pp. 1520-1527
    • Shao, Y.E.1    Hou, C.-D.2
  • 67
    • 77957018181 scopus 로고    scopus 로고
    • A hybrid SVM based decision tree
    • 2-s2.0-77957018181 10.1016/j.patcog.2010.06.010 ZBL1207.68293
    • Arun Kumar M., Gopal M., A hybrid SVM based decision tree. Pattern Recognition 2010 43 12 3977 3987 2-s2.0-77957018181 10.1016/j.patcog.2010.06.010 ZBL1207.68293
    • (2010) Pattern Recognition , vol.43 , Issue.12 , pp. 3977-3987
    • Arun Kumar, M.1    Gopal, M.2
  • 68
    • 84855913759 scopus 로고    scopus 로고
    • Hybrid medical image classification using association rule mining with decision tree algorithm
    • Rajendran P., Madheswaran M., Hybrid medical image classification using association rule mining with decision tree algorithm. Journal of Computing 2010 2 127 136
    • (2010) Journal of Computing , vol.2 , pp. 127-136
    • Rajendran, P.1    Madheswaran, M.2
  • 70
    • 84856723719 scopus 로고    scopus 로고
    • An object-based classification of mangroves using a hybrid decision tree-support vector machine approach
    • 2-s2.0-84856723719 10.3390/rs3112440
    • Heumann B. W., An object-based classification of mangroves using a hybrid decision tree-support vector machine approach. Remote Sensing 2011 3 11 2440 2460 2-s2.0-84856723719 10.3390/rs3112440
    • (2011) Remote Sensing , vol.3 , Issue.11 , pp. 2440-2460
    • Heumann, B.W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.