메뉴 건너뛰기




Volumn 24, Issue 7-8, 2014, Pages 1917-1928

Adaptive k-means clustering algorithm for MR breast image segmentation

Author keywords

Adaptive segmentation; Breast cancer; Image segmentation; K means clustering; Magnetic resonance (MR) image

Indexed keywords

IMAGE SEGMENTATION; MAGNETIC RESONANCE; MEDICAL IMAGING; OPTIMIZATION;

EID: 84900860206     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-013-1437-4     Document Type: Article
Times cited : (135)

References (41)
  • 1
    • 84900846646 scopus 로고    scopus 로고
    • American Cancer Society
    • American Cancer Society (2006) Breast cancer facts and figures 2005: 1-28.
    • (2006) Breast Cancer Facts and Figures , vol.2005 , pp. 1-28
  • 2
    • 63749101977 scopus 로고    scopus 로고
    • Lyon: International Agency for Research on Cancer
    • Boyle P, Levin B (2008) World CanCer report. International Agency for Research on Cancer, Lyon.
    • (2008) World Cancer Report
    • Boyle, P.1    Levin, B.2
  • 3
    • 0001366282 scopus 로고
    • Detection of radiographic abnormalities in mammograms by means of optical scanning and computer analysis
    • Winsberg F, Elkin M, Macy J, Bordaz V, Weymouth W (1967) Detection of radiographic abnormalities in mammograms by means of optical scanning and computer analysis. Radiology 89(2): 211-215.
    • (1967) Radiology , vol.89 , Issue.2 , pp. 211-215
    • Winsberg, F.1    Elkin, M.2    Macy, J.3    Bordaz, V.4    Weymouth, W.5
  • 4
    • 0035088227 scopus 로고    scopus 로고
    • Mammographic characteristics of 115 missed cancers later detected with screening mammography and the potential utility of computer-aided detection
    • Birdwell RL, Ikeda DM, OShaughnessy KD, Sickles EA (2001) Mammographic characteristics of 115 missed cancers later detected with screening mammography and the potential utility of computer-aided detection. Radiology 219(1): 192-202.
    • (2001) Radiology , vol.219 , Issue.1 , pp. 192-202
    • Birdwell, R.L.1    Ikeda, D.M.2    OShaughnessy, K.D.3    Sickles, E.A.4
  • 5
    • 0034860859 scopus 로고    scopus 로고
    • Screening mammography with computer-aided detection: prospective study of 12860 patients in a community breast center
    • Freer TW, Ulissey MJ (2001) Screening mammography with computer-aided detection: prospective study of 12860 patients in a community breast center. Radiology 220: 781-786.
    • (2001) Radiology , vol.220 , pp. 781-786
    • Freer, T.W.1    Ulissey, M.J.2
  • 8
    • 34447325631 scopus 로고    scopus 로고
    • Image histogram thresholding based on multiobjective optimization
    • Nakib A, Oulhadj H, Siarry P (2007) Image histogram thresholding based on multiobjective optimization. Sig Process 87(11): 2516-2534.
    • (2007) Sig Process , vol.87 , Issue.11 , pp. 2516-2534
    • Nakib, A.1    Oulhadj, H.2    Siarry, P.3
  • 10
    • 79954618329 scopus 로고    scopus 로고
    • Multi-objective nature-inspired clustering and classification techniques for image segmentation
    • Bong CW, Rajeswari M (2010) Multi-objective nature-inspired clustering and classification techniques for image segmentation. Cybern Intell Syst CIS 11(4): 3271-3282.
    • (2010) Cybern Intell Syst CIS , vol.11 , Issue.4 , pp. 3271-3282
    • Bong, C.W.1    Rajeswari, M.2
  • 11
    • 78751612609 scopus 로고    scopus 로고
    • Prostate boundary detection in ultrasound images using biologically-inspired spiking neural network
    • Hassanien AE, Al-Qaheri H, El-Dahshan EA (2011) Prostate boundary detection in ultrasound images using biologically-inspired spiking neural network. Appl Soft Comput 11(2): 2035-2041.
    • (2011) Appl Soft Comput , vol.11 , Issue.2 , pp. 2035-2041
    • Hassanien, A.E.1    Al-Qaheri, H.2    El-Dahshan, E.A.3
  • 12
    • 79960127572 scopus 로고    scopus 로고
    • Multiobjective Optimization Approaches in Image Segmentation The Directions and Challenges
    • Chin-Wei B, Rajeswari M (2010) Multiobjective optimization approaches in image segmentation the directions and challenges. Int J Adv Soft Comput Appl 2(1): 2074-8523.
    • (2010) Int J Adv Soft Comput Appl , vol.2 , Issue.1 , pp. 2074-8523
    • Chin-Wei, B.1    Rajeswari, M.2
  • 15
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recogn Lett 31(8): 651-666.
    • (2010) Pattern Recogn Lett , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 16
    • 0032650370 scopus 로고    scopus 로고
    • A robust competitive clustering algorithm with applications in computer vision
    • Frigui H, Krishnapuram R (1999) A robust competitive clustering algorithm with applications in computer vision. IEEE Trans Pattern Anal Mach Intell 21(5): 450-465.
    • (1999) IEEE Trans Pattern Anal Mach Intell , vol.21 , Issue.5 , pp. 450-465
    • Frigui, H.1    Krishnapuram, R.2
  • 21
    • 70449699857 scopus 로고    scopus 로고
    • A symmetry based multiobjective clustering technique for automatic evolution of clusters
    • Saha S, Bandyopadhyay S (2010) A symmetry based multiobjective clustering technique for automatic evolution of clusters. Pattern Recogn 43(3): 738-751.
    • (2010) Pattern Recogn , vol.43 , Issue.3 , pp. 738-751
    • Saha, S.1    Bandyopadhyay, S.2
  • 22
    • 53749095558 scopus 로고    scopus 로고
    • Improving segmentation accuracy for magnetic resonance imaging using a boosted decision tree
    • Chao WH, Chen YY, Cho CW, Lin SH, Shih YY, Tsang S (2008) Improving segmentation accuracy for magnetic resonance imaging using a boosted decision tree. J Neurosci Methods 175(2): 206-217.
    • (2008) J Neurosci Methods , vol.175 , Issue.2 , pp. 206-217
    • Chao, W.H.1    Chen, Y.Y.2    Cho, C.W.3    Lin, S.H.4    Shih, Y.Y.5    Tsang, S.6
  • 23
    • 0030215237 scopus 로고    scopus 로고
    • The application of competitive Hopfield neural network to medical image segmentation
    • Cheng KS, Lin JS, Mao CW (1996) The application of competitive Hopfield neural network to medical image segmentation. IEEE Trans Med Imag 4(15): 560-567.
    • (1996) IEEE Trans Med Imag , vol.4 , Issue.15 , pp. 560-567
    • Cheng, K.S.1    Lin, J.S.2    Mao, C.W.3
  • 24
    • 0038668787 scopus 로고    scopus 로고
    • Segmentation using fuzzy divergence
    • Chaira T, Ray AK (2003) Segmentation using fuzzy divergence. Pattern Recogn Lett 24(12): 1837-1844.
    • (2003) Pattern Recogn Lett , vol.24 , Issue.12 , pp. 1837-1844
    • Chaira, T.1    Ray, A.K.2
  • 25
    • 0036994113 scopus 로고    scopus 로고
    • Image segmentation by histogram thresholding using fuzzy sets
    • Tobias OJ, Seara R (2002) Image segmentation by histogram thresholding using fuzzy sets. IEEE Trans Image Process 11(12): 1457-1465.
    • (2002) IEEE Trans Image Process , vol.11 , Issue.12 , pp. 1457-1465
    • Tobias, O.J.1    Seara, R.2
  • 26
    • 38049113794 scopus 로고    scopus 로고
    • SVM for density estimation and application to medical image segmentation
    • Zhang Z, Zhang S, Zhang CX, Chen YZ (2006) SVM for density estimation and application to medical image segmentation. J Zhejiang Univ Sci B 7(5): 365-372.
    • (2006) J Zhejiang Univ Sci B , vol.7 , Issue.5 , pp. 365-372
    • Zhang, Z.1    Zhang, S.2    Zhang, C.X.3    Chen, Y.Z.4
  • 28
    • 84900863947 scopus 로고    scopus 로고
    • Comparative performance evaluation of segmentation methods in breast cancer images
    • Patel BC, Sinha GR (2011) Comparative performance evaluation of segmentation methods in breast cancer images. Int J Mach Intell 3(3): 130-133.
    • (2011) Int J Mach Intell , vol.3 , Issue.3 , pp. 130-133
    • Patel, B.C.1    Sinha, G.R.2
  • 29
    • 84869489087 scopus 로고    scopus 로고
    • Breast cancer MRI diagnosis approach using support vector machine and pulse coupled neural networks
    • Hassanien AE, Kim TH (2012) Breast cancer MRI diagnosis approach using support vector machine and pulse coupled neural networks. J Appl Logic 10(4): 277-284.
    • (2012) J Appl Logic , vol.10 , Issue.4 , pp. 277-284
    • Hassanien, A.E.1    Kim, T.H.2
  • 31
    • 37049035589 scopus 로고    scopus 로고
    • Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching
    • Ertas G, Glr H, Osman O, Uan ON, Tunaci M, Dursun M (2008) Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching. Comput Biol Med 38(1): 116-126.
    • (2008) Comput Biol Med , vol.38 , Issue.1 , pp. 116-126
    • Ertas, G.1    Glr, H.2    Osman, O.3    Uan, O.N.4    Tunaci, M.5    Dursun, M.6
  • 32
    • 84861624632 scopus 로고    scopus 로고
    • Computer-aided diagnosis in breast DCE-MRI Quantification of the heterogeneity of breast lesions
    • Preim U, Glaer S, Preim B, Fischbach F, Ricke J (2012) Computer-aided diagnosis in breast DCE-MRI Quantification of the heterogeneity of breast lesions. Eur J Radiol 81(7): 1532-1538.
    • (2012) Eur J Radiol , vol.81 , Issue.7 , pp. 1532-1538
    • Preim, U.1    Glaer, S.2    Preim, B.3    Fischbach, F.4    Ricke, J.5
  • 34
    • 84862808492 scopus 로고    scopus 로고
    • Estimation of breast density: an adaptive moment preserving method for segmentation of fibroglandular tissue in breast magnetic resonance images
    • Wei CH, Li Y, Huang PJ, Gwo CY, Harms SE (2012) Estimation of breast density: an adaptive moment preserving method for segmentation of fibroglandular tissue in breast magnetic resonance images. Eur J Radiol 81(4): e618-e624.
    • (2012) Eur J Radiol , vol.81 , Issue.4
    • Wei, C.H.1    Li, Y.2    Huang, P.J.3    Gwo, C.Y.4    Harms, S.E.5
  • 35
    • 77955585606 scopus 로고    scopus 로고
    • The segmentation of colorectal MRI images
    • Joshi N, Bond S, Brady M (2010) The segmentation of colorectal MRI images. Med Image Anal 14(4): 494-509.
    • (2010) Med Image Anal , vol.14 , Issue.4 , pp. 494-509
    • Joshi, N.1    Bond, S.2    Brady, M.3
  • 36
    • 0036109654 scopus 로고    scopus 로고
    • NNeural network-based segmentation of dynamic MR mammographic images
    • Lucht R, Delorme S, Brix G (2002) NNeural network-based segmentation of dynamic MR mammographic images. Magn Reson Imaging 20(2): 147-154.
    • (2002) Magn Reson Imaging , vol.20 , Issue.2 , pp. 147-154
    • Lucht, R.1    Delorme, S.2    Brix, G.3
  • 37
    • 84876133579 scopus 로고    scopus 로고
    • Response of bilateral breasts to the endogenous hormonal fluctuation in a menstrual cycle evaluated using 3D MRI
    • Chen JH, Chan S, Yeh DC, Fwu PT, Lin M, Su MY (2013) Response of bilateral breasts to the endogenous hormonal fluctuation in a menstrual cycle evaluated using 3D MRI. Magn Reson Imaging 31(4): 538-544.
    • (2013) Magn Reson Imaging , vol.31 , Issue.4 , pp. 538-544
    • Chen, J.H.1    Chan, S.2    Yeh, D.C.3    Fwu, P.T.4    Lin, M.5    Su, M.Y.6
  • 38
    • 78650691983 scopus 로고    scopus 로고
    • Robust kernel FCM in segmentation of breast medical images
    • Kannan SR, Ramathilagam S, Devi R, Sathya A (2011) Robust kernel FCM in segmentation of breast medical images. Expert Syst Appl 38(4): 4382-4389.
    • (2011) Expert Syst Appl , vol.38 , Issue.4 , pp. 4382-4389
    • Kannan, S.R.1    Ramathilagam, S.2    Devi, R.3    Sathya, A.4
  • 39
    • 0034301313 scopus 로고    scopus 로고
    • UAnalysis and evaluation of hard and fuzzy clustering segmentation techniques in burned patient images
    • Betanzosa AA, Varelaa BA, Martnez AC (2000) UAnalysis and evaluation of hard and fuzzy clustering segmentation techniques in burned patient images. Image Vision Comput 18(13): 1045-1054.
    • (2000) Image Vis Comput , vol.18 , Issue.13 , pp. 1045-1054
    • Betanzosa, A.A.1    Varelaa, B.A.2    Martnez, A.C.3
  • 40
    • 0029669420 scopus 로고    scopus 로고
    • A comparative study of texture measures with classification based on featured distributions
    • Ojola T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on featured distributions. Pattern Recogn 29(1): 51-59.
    • (1996) Pattern Recogn , vol.29 , Issue.1 , pp. 51-59
    • Ojola, T.1    Pietikainen, M.2    Harwood, D.3
  • 41
    • 0033101072 scopus 로고    scopus 로고
    • Unsupervised texture segmentation using feature distribution
    • Ojola T, Pietikainen M (1999) Unsupervised texture segmentation using feature distribution. Pattern Recogn 32(3): 447-486.
    • (1999) Pattern Recogn , vol.32 , Issue.3 , pp. 447-486
    • Ojola, T.1    Pietikainen, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.