메뉴 건너뛰기




Volumn 38, Issue 4, 2011, Pages 4382-4389

Robust kernel FCM in segmentation of breast medical images

Author keywords

Clustering; Fuzzy c means; Image segmentation; Kernel function; MR imaging; Tangent function

Indexed keywords

CLUSTERING; FUZZY C MEAN; KERNEL FUNCTION; MR IMAGING; TANGENT FUNCTIONS;

EID: 78650691983     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.09.107     Document Type: Article
Times cited : (78)

References (24)
  • 1
    • 0031353193 scopus 로고    scopus 로고
    • A tabu search-based algorithm for the fuzzy clustering problem
    • K.S. Al-Sultan, and C.A. Fedjki A tabu search-based algorithm for the fuzzy clustering problem Pattern Recognition 30 12 1997 2023 2030
    • (1997) Pattern Recognition , vol.30 , Issue.12 , pp. 2023-2030
    • Al-Sultan, K.S.1    Fedjki, C.A.2
  • 2
    • 0027658607 scopus 로고
    • A global algorithm for the fuzzy clustering problem
    • K.S. Al-Sultan, and S.Z. Selim A global algorithm for the fuzzy clustering problem Pattern Recognition 26 9 1993 1357 1361
    • (1993) Pattern Recognition , vol.26 , Issue.9 , pp. 1357-1361
    • Al-Sultan, K.S.1    Selim, S.Z.2
  • 4
    • 0027275316 scopus 로고
    • Review of MR image segmentation using pattern recognition
    • J. Bezdek, L. Hall, and L. Clarke Review of MR image segmentation using pattern recognition Medical Physics 20 1993 1033 1048
    • (1993) Medical Physics , vol.20 , pp. 1033-1048
    • Bezdek, J.1    Hall, L.2    Clarke, L.3
  • 7
    • 29944447410 scopus 로고    scopus 로고
    • A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR Images1
    • W. Chen, M.L. Giger, and U. Bick A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR Images1 Academic Radiolory 13 1 2006 63 72
    • (2006) Academic Radiolory , vol.13 , Issue.1 , pp. 63-72
    • Chen, W.1    Giger, M.L.2    Bick, U.3
  • 10
    • 0015644825 scopus 로고
    • A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters
    • J.C. Dunn A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters Journal of Cybernetics 3 1973 32 57
    • (1973) Journal of Cybernetics , vol.3 , pp. 32-57
    • Dunn, J.C.1
  • 14
    • 50149110607 scopus 로고    scopus 로고
    • A new segmentation system for brain MR images based on fuzzy techniques
    • S.R. Kannan A new segmentation system for brain MR images based on fuzzy techniques Applied Soft Computing 8 4 2008 1599 1606
    • (2008) Applied Soft Computing , vol.8 , Issue.4 , pp. 1599-1606
    • Kannan, S.R.1
  • 15
  • 16
    • 0033705385 scopus 로고    scopus 로고
    • Feature-based fuzzy classification for interpretation of mammograms
    • N.S. Lyer, A. Kandel, and M. Schneider Feature-based fuzzy classification for interpretation of mammograms Fuzzy Sets Systems 114 2002 271 280
    • (2002) Fuzzy Sets Systems , vol.114 , pp. 271-280
    • Lyer, N.S.1    Kandel, A.2    Schneider, M.3
  • 18
    • 0032595185 scopus 로고    scopus 로고
    • Alternating cluster estimation: A new tool for clustering and function approximation
    • T.A. Runkler, and J.C. Bezdek Alternating cluster estimation: A new tool for clustering and function approximation IEEE Transactions on Fuzzy Systems 7 4 1999 377 393
    • (1999) IEEE Transactions on Fuzzy Systems , vol.7 , Issue.4 , pp. 377-393
    • Runkler, T.A.1    Bezdek, J.C.2
  • 19
    • 0014534297 scopus 로고
    • A new approach to clustering
    • E.H. Ruspini A new approach to clustering Information and Control 15 1 1969 22 32
    • (1969) Information and Control , vol.15 , Issue.1 , pp. 22-32
    • Ruspini, E.H.1
  • 20
    • 0014810305 scopus 로고
    • Numerical methods for fuzzy clustering
    • E.H. Ruspini Numerical methods for fuzzy clustering Information Science 2 1970 319 350
    • (1970) Information Science , vol.2 , pp. 319-350
    • Ruspini, E.H.1
  • 22
    • 0033220816 scopus 로고    scopus 로고
    • A fuzzy hyperspectral classifier for automatic target recognition (ATR) systems
    • S.M. Yamany, A.A. Farag, and S. Hsu A fuzzy hyperspectral classifier for automatic target recognition (ATR) systems Pattern Recognition Letters 20 1999 1431 1438
    • (1999) Pattern Recognition Letters , vol.20 , pp. 1431-1438
    • Yamany, S.M.1    Farag, A.A.2    Hsu, S.3
  • 23
    • 0036107314 scopus 로고    scopus 로고
    • Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms
    • M.S. Yang, Y.J. Hu, K.C.R. Lin, and C.C.L. Lin Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms Magnetic Resonance Imaging 20 2002 173 179
    • (2002) Magnetic Resonance Imaging , vol.20 , pp. 173-179
    • Yang, M.S.1    Hu, Y.J.2    Lin, K.C.R.3    Lin, C.C.L.4
  • 24
    • 4444347719 scopus 로고    scopus 로고
    • A novel kernelized fuzzy c-means algorithm with application in medical image segmentation
    • D.-Q. Zhang, and S.-C. Chen A novel kernelized fuzzy c-means algorithm with application in medical image segmentation Artificial Intelligence in Medicine 32 2004 37 50
    • (2004) Artificial Intelligence in Medicine , vol.32 , pp. 37-50
    • Zhang, D.-Q.1    Chen, S.-C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.