메뉴 건너뛰기




Volumn 47, Issue 9, 2014, Pages 2952-2961

Detect foreground objects via adaptive fusing model in a hybrid feature space

Author keywords

Adaptive fusion model; Foreground detection; Lateral inhibition filter; ST SILTP

Indexed keywords

TEXTURES;

EID: 84900543728     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2014.03.016     Document Type: Article
Times cited : (16)

References (37)
  • 1
    • 77956001016 scopus 로고    scopus 로고
    • Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes
    • S.C. Liao, G.Y. Zhao, V. Kellokumpu, M. Pietikainen, S.Z. Li, Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes, in: CVPR, 2010, pp. 1301-1306
    • (2010) CVPR , pp. 1301-1301
    • Liao, S.C.1    Zhao, G.Y.2    Kellokumpu, V.3    Pietikainen, M.4    Li, S.Z.5
  • 2
    • 0031187308 scopus 로고    scopus 로고
    • Pfinder: Real-time tracking of the human body
    • C. Wren, A. Azarbayejani, T. Darrell, A. Pentland, Pfinder: real-time tracking of the human body, in: PAMI, vol. 19(7), 1997, pp. 780-785
    • (1997) PAMI , vol.19 , Issue.7 , pp. 780-780
    • Wren, C.1    Azarbayejani, A.2    Darrell, T.3    Pentland, A.4
  • 3
    • 0032634283 scopus 로고    scopus 로고
    • Adaptive background mixture models for real-time tracking
    • C. Stauffer, W.E.L. Grimson, Adaptive background mixture models for real-time tracking, in: CVPR, vol. 2, 1999, pp. 246-252
    • (1999) CVPR , vol.2 , pp. 246-246
    • Stauffer, C.1    Grimson, W.E.L.2
  • 5
    • 0032296592 scopus 로고    scopus 로고
    • Using adaptive tracking to classify and monitor activities in a site
    • W. Grimson, C. Stauffer, R. Romano, L. Lee, Using adaptive tracking to classify and monitor activities in a site, in: CVPR, 1998
    • (1998) CVPR
    • Grimson, W.1    Stauffer, C.2    Romano, R.3    Lee, L.4
  • 7
    • 0348055489 scopus 로고    scopus 로고
    • A framework for high-level feedback to adaptive, perpixel, mixture-of-Gaussian background models
    • M. Harville, A framework for high-level feedback to adaptive, perpixel, mixture-of-Gaussian background models, in: ECCV, 2002
    • (2002) ECCV
    • Harville, M.1
  • 8
    • 84964316524 scopus 로고    scopus 로고
    • A hierarchical approach to robust background subtraction using color and gradient information
    • O. Javed, K. Shafique, M. Shah, A hierarchical approach to robust background subtraction using color and gradient information, in: IEEE Workshop on Motion and Video Computing, 2002
    • (2002) IEEE Workshop on Motion and Video Computing
    • Javed, O.1    Shafique, K.2    Shah, M.3
  • 11
    • 77950191139 scopus 로고    scopus 로고
    • A multiscale region based motion detection and background subtraction algorithm
    • P. Varcheie, M. Sills-Lavoie, and G.A. Bilodeau A multiscale region based motion detection and background subtraction algorithm Sensors 10 2010 1041 1061
    • (2010) Sensors , vol.10 , pp. 1041-1061
    • Varcheie, P.1    Sills-Lavoie, M.2    Bilodeau, G.A.3
  • 12
    • 28044439637 scopus 로고    scopus 로고
    • Bayesian modeling of dynamic scenes for object detection
    • Y. Sheikh, M. Shah, Bayesian modeling of dynamic scenes for object detection, in: PAMI, vol. 27, 2005, pp. 1778-1792
    • (2005) PAMI , vol.27 , pp. 1778-1778
    • Sheikh, Y.1    Shah, M.2
  • 13
    • 84866682724 scopus 로고    scopus 로고
    • Background modeling using adaptive pixelwise kernel variances in a hybrid feature space
    • M. Narayana, A. Hanson, E. Learned-Miller, Background modeling using adaptive pixelwise kernel variances in a hybrid feature space, in: CVPR, 2012
    • (2012) CVPR
    • Narayana, M.1    Hanson, A.2    Learned-Miller, E.3
  • 14
    • 84944070277 scopus 로고    scopus 로고
    • Nonparametric model for background subtraction
    • A.M. Elgammal, D. Harwood, L.S. Davis, Nonparametric model for background subtraction, in: ECCV, 2000, pp. 751-767
    • (2000) ECCV , pp. 751-751
    • Elgammal, A.M.1    Harwood, D.2    Davis, L.S.3
  • 16
    • 21644463503 scopus 로고    scopus 로고
    • Real-time foreground background segmentation using codebook model
    • K. Kim, T.H. Chalidabhongse, D. Harwood, and L. Davis Real-time foreground background segmentation using codebook model Real-Time Imaging 11 2005 172 185
    • (2005) Real-Time Imaging , vol.11 , pp. 172-185
    • Kim, K.1    Chalidabhongse, T.H.2    Harwood, D.3    Davis, L.4
  • 18
    • 77955326949 scopus 로고    scopus 로고
    • Spatio-temporal context for codebook-based dynamic background subtraction
    • M. Wu, and X. Peng Spatio-temporal context for codebook-based dynamic background subtraction Int. J. Electron. Commun. 64 8 2010 739 747
    • (2010) Int. J. Electron. Commun , vol.64 , Issue.8 , pp. 739-747
    • Wu, M.1    Peng, X.2
  • 19
    • 84866699148 scopus 로고    scopus 로고
    • Foreground detection using spatiotemporal projection kernels
    • Y. Moshe, H. Hel-Or, Y. Hel-Or, Foreground detection using spatiotemporal projection kernels, in: CVPR, 2012, pp. 3210-3217
    • (2012) CVPR , pp. 3210-3210
    • Moshe, Y.1    Hel-Or, H.2    Hel-Or, Y.3
  • 20
    • 33144466752 scopus 로고    scopus 로고
    • A texture-based method for modeling the background and detecting moving objects
    • M. Heikkila, M. Pietikainen, A texture-based method for modeling the background and detecting moving objects, in: PAMI, vol. 28(4), 2006, pp. 657-662
    • (2006) PAMI , vol.28 , Issue.4 , pp. 657-657
    • Heikkila, M.1    Pietikainen, M.2
  • 21
    • 33846818769 scopus 로고    scopus 로고
    • Robust background subtraction with shadow and highlight removal for indoor surveillance
    • J.S. Hu, and T.M. Su Robust background subtraction with shadow and highlight removal for indoor surveillance J. Adv. Signal Process 1 2007 108 121
    • (2007) J. Adv. Signal Process , Issue.1 , pp. 108-121
    • Hu, J.S.1    Su, T.M.2
  • 22
    • 34948822263 scopus 로고    scopus 로고
    • Multi-layer background subtraction based on color and texture
    • J. Yao, J.M. Odobez, Multi-layer background subtraction based on color and texture, in: CVPR, 2007, pp. 1-8
    • (2007) CVPR , pp. 1-1
    • Yao, J.1    Odobez, J.M.2
  • 23
    • 65649112472 scopus 로고    scopus 로고
    • Learning a scene background model via classification
    • H.H. Lin, T.L. Liu, and J.H. Chuang Learning a scene background model via classification IEEE Trans. Signal Process. 57 5 2009 1641 1654
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.5 , pp. 1641-1654
    • Lin, H.H.1    Liu, T.L.2    Chuang, J.H.3
  • 24
    • 78650908081 scopus 로고
    • Robust multiple car tracking with occlusion reasoning
    • D. Koller, J. Weber, J. Malik, Robust multiple car tracking with occlusion reasoning, in: ECCV, 1994, pp. 189-196
    • (1994) ECCV , pp. 189-189
    • Koller, D.1    Weber, J.2    Malik, J.3
  • 25
    • 0033285765 scopus 로고    scopus 로고
    • Wallflower: Principles and practice of background maintenance
    • K. Toyama, J. Krumm, B. Brumitt, B. Meyers, Wallflower: principles and practice of background maintenance, in: ICCV, 1999, pp. 255-261
    • (1999) ICCV , pp. 255-255
    • Toyama, K.1    Krumm, J.2    Brumitt, B.3    Meyers, B.4
  • 26
    • 56749183654 scopus 로고    scopus 로고
    • Scene modeling and change detection in dynamic scenes a subspace approach
    • A. Mittal, A. Monnet, and N. Paragios Scene modeling and change detection in dynamic scenes a subspace approach Comput. Vis. Image Underst. 113 1 2009 63 79
    • (2009) Comput. Vis. Image Underst , vol.113 , Issue.1 , pp. 63-79
    • Mittal, A.1    Monnet, A.2    Paragios, N.3
  • 27
    • 58049211805 scopus 로고    scopus 로고
    • Independent component analysis-based background subtraction for indoor surveillance
    • D.M. Tsai, and S.C. Lai Independent component analysis-based background subtraction for indoor surveillance IEEE Trans. Image Process. 18 1 2009 158 167
    • (2009) IEEE Trans. Image Process , vol.18 , Issue.1 , pp. 158-167
    • Tsai, D.M.1    Lai, S.C.2
  • 28
    • 70349226934 scopus 로고    scopus 로고
    • Vibe: A powerful random technique to estimate the background in video sequences
    • O. Barnich, M.V. Droogenbroeck, Vibe: a powerful random technique to estimate the background in video sequences, in: ICASSP, 2009, pp. 945-948
    • (2009) ICASSP , pp. 945-945
    • Barnich, O.1    Droogenbroeck, M.V.2
  • 29
    • 79957497122 scopus 로고    scopus 로고
    • Vibe a universal background subtraction algorithm for video sequences
    • O. Barnich, and M.V. Droogenbroeck Vibe a universal background subtraction algorithm for video sequences IEEE Trans. Image Process. 20 6 2011 1709 1724
    • (2011) IEEE Trans. Image Process , vol.20 , Issue.6 , pp. 1709-1724
    • Barnich, O.1    Droogenbroeck, M.V.2
  • 33
    • 0036474806 scopus 로고    scopus 로고
    • Integrating intensity and texture differences for robust change detection
    • L.Y. Li, and M.K.H. Leung Integrating intensity and texture differences for robust change detection IEEE Trans. Image Process. 11 2 2002 105 112
    • (2002) IEEE Trans. Image Process , vol.11 , Issue.2 , pp. 105-112
    • Li, L.Y.1    Leung, M.K.H.2
  • 34
    • 84882679648 scopus 로고    scopus 로고
    • Small and dim target detection via lateral inhibition filtering and artificial bee colony based selective visual attention
    • H.B. Duan, Y.M. Deng, X.H. Wang, and C.F. Xu Small and dim target detection via lateral inhibition filtering and artificial bee colony based selective visual attention PLoS ONE 8 8 2013
    • (2013) PLoS ONE , vol.8 , Issue.8
    • Duan, H.B.1    Deng, Y.M.2    Wang, X.H.3    Xu, C.F.4
  • 35
    • 0000127657 scopus 로고
    • The response of single optic nerve fibers of the vertebrate eye to illumination of the retina
    • H.K. Hartline The response of single optic nerve fibers of the vertebrate eye to illumination of the retina Am. J. Physiol. 121 2 1938 400 415
    • (1938) Am. J. Physiol , vol.121 , Issue.2 , pp. 400-415
    • Hartline, H.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.