-
1
-
-
34447257464
-
-
N. ALIBAUD, J. DRONIOU, and J. VOVELLE, Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Differ. Equ. 4 (2007), 479-499, http://dx.doi.org/10.1142/ S0219891607001227. MR 2339805 (2008i:35198)
-
N. ALIBAUD, J. DRONIOU, and J. VOVELLE, Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Differ. Equ. 4 (2007), 479-499, http://dx.doi.org/10.1142/ S0219891607001227. MR 2339805 (2008i:35198)
-
-
-
-
2
-
-
34250136481
-
Remarks on the breakdown of smooth solutions for the 3-D Euler equations
-
85j:35154
-
J. T. BEALE, T. KATO, and A. MAJDA, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Comm. Math. Phys. 94 (1984), 61-66, http://dx.doi.org/10.1007/BF01212349. MR 763762 (85j:35154)
-
(1984)
Comm. Math. Phys
, vol.94
, pp. 61-66
-
-
BEALE, J.T.1
KATO, T.2
MAJDA, A.3
-
3
-
-
0002015456
-
Fractal Burgers equations, J
-
MR 1637513 99g:35111
-
P. BILER, T. FUNAKI, and W. A. WOYCZYNSKI, Fractal Burgers equations, J. Differential Equa-tions 148 (1998), 9-46, http://dx.doi.org/10.1006/jdeq.1998.3458. MR 1637513 (99g:35111)
-
(1998)
Differential Equa-tions
, vol.148
, pp. 9-46
-
-
BILER, P.1
FUNAKI, T.2
WOYCZYNSKI, W.A.3
-
4
-
-
84990556249
-
A simple one-dimensional model for the three-dimensional vorticity equation
-
87a:76037
-
P. CONSTANTIN, P. D. LAX, and A. MAJDA, A simple one-dimensional model for the three-dimensional vorticity equation, Comm. Pure Appl. Math. 38 (1985), 715-724, http://dx.doi.org/10.1002/cpa. 3160380605. MR 812343 (87a:76037)
-
(1985)
Comm. Pure Appl. Math
, vol.38
, pp. 715-724
-
-
CONSTANTIN, P.1
LAX, P.D.2
MAJDA, A.3
-
5
-
-
0043172071
-
Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar
-
95i:76107
-
P. CONSTANTIN, A. J. MAJDA, and E. TABAK, Formation of strong fronts in the 2-D quasi-geostrophic thermal active scalar, Nonlinearity 7 (1994), 1495-1533, http://dx.doi.org/10.1088/0951- 7715/7/6/001. MR 1304437 (95i:76107)
-
(1994)
Nonlinearity
, vol.7
, pp. 1495-1533
-
-
CONSTANTIN, P.1
MAJDA, A.J.2
TABAK, E.3
-
6
-
-
33745899606
-
-
A. CóRDOBA, D. CóRDOBA, and M. A. FONTELOS, Formation of singularities for a trans-port equation with nonlocal velocity, Ann. of Math. (2) 162 (2005), 1377-1389. MR 2179734 (2007b:35011)
-
A. CóRDOBA, D. CóRDOBA, and M. A. FONTELOS, Formation of singularities for a trans-port equation with nonlocal velocity, Ann. of Math. (2) 162 (2005), 1377-1389. MR 2179734 (2007b:35011)
-
-
-
-
7
-
-
33751328809
-
-
-, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation, J. Math. Pures Appl. (9) 86 (2006), 529-540. MR 2281451 (2007k:35040) (English, with English and French summaries)
-
-, Integral inequalities for the Hilbert transform applied to a nonlocal transport equation, J. Math. Pures Appl. (9) 86 (2006), 529-540. MR 2281451 (2007k:35040) (English, with English and French summaries)
-
-
-
-
9
-
-
54949113612
-
Well-posedness for a transport equation with nonlocal velocity
-
MR 2464570
-
-, Well-posedness for a transport equation with nonlocal velocity, J. Funct. Anal. 255 (2008), 3070-3097. MR 2464570
-
(2008)
J. Funct. Anal
, vol.255
, pp. 3070-3097
-
-
DONG, H.1
-
10
-
-
50249090960
-
-
H. DONG and D. DU, Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space, Discrete Contin. Dyn. Syst. 21 (2008), 1095-1101, http://dx.doi.org/10.3934/dcds.2009.23.765. MR 2399451 (2009b:76175)
-
H. DONG and D. DU, Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space, Discrete Contin. Dyn. Syst. 21 (2008), 1095-1101, http://dx.doi.org/10.3934/dcds.2009.23.765. MR 2399451 (2009b:76175)
-
-
-
-
12
-
-
54949154201
-
-
-, Finite time singularities for a class of generalized surface quasi-geostrophic equations, Proc. Amer. Math. Soc. 136 (2008), 2555-2563, http://dx.doi.org/10.1090/S0002-9939-08-09328-3. MR 2390526 (2009c:35361)
-
-, Finite time singularities for a class of generalized surface quasi-geostrophic equations, Proc. Amer. Math. Soc. 136 (2008), 2555-2563, http://dx.doi.org/10.1090/S0002-9939-08-09328-3. MR 2390526 (2009c:35361)
-
-
-
-
13
-
-
64549139774
-
Optimal local smoothing and analyticity rate estimates for the generalized Navier-Stokes equations
-
-, Optimal local smoothing and analyticity rate estimates for the generalized Navier-Stokes equations, Comm. Math. Sci. 7 (2009), 67-80.
-
(2009)
Comm. Math. Sci
, vol.7
, pp. 67-80
-
-
DONG, H.1
LI, D.2
-
14
-
-
33846785446
-
-
Invent. Math, MR 2276260 2008f:5308
-
A. KISELEV, F. NAZAROV, and A. VOLBERG, Global well-posedness for the critical 2D dissipative quasi-geostrophic equation, Invent. Math. 167 (2007), 445-453, http://dx.doi.org/10. 1007/s00222-006-0020-3. MR 2276260 (2008f:5308)
-
(2007)
Global well-posedness for the critical 2D dissipative quasi-geostrophic equation
, vol.167
, pp. 445-453
-
-
KISELEV, A.1
NAZAROV, F.2
VOLBERG, A.3
|